分布式ID详解(5种分布式ID生成方案)(分布式id解决方案)

  本篇文章为你整理了分布式ID详解(5种分布式ID生成方案)(分布式id解决方案)的详细内容,包含有分布式id的作用 分布式id解决方案 分布式id生成算法 分布式id leaf 分布式ID详解(5种分布式ID生成方案),希望能帮助你了解 分布式ID详解(5种分布式ID生成方案)。

  分布式架构会涉及到分布式全局唯一ID的生成,今天我就来详解分布式全局唯一ID,以及分布式全局唯一ID的实现方案@mikechen

  什么是分布式系统唯一ID

  在复杂分布式系统中,往往需要对大量的数据和消息进行唯一标识。

  如在金融、电商、支付、等产品的系统中,数据日渐增长,对数据分库分表后需要有一个唯一ID来标识一条数据或消息,数据库的自增ID显然不能满足需求,此时一个能够生成全局唯一ID的系统是非常必要的。

  

  分布式系统唯一ID的特点

  全局唯一性:不能出现重复的ID号,既然是唯一标识,这是最基本的要求。

  趋势递增:在MySQL InnoDB引擎中使用的是聚集索引,由于多数RDBMS使用B-tree的数据结构来存储索引数据,在主键的选择上面我们应该尽量使用有序的主键保证写入性能。

  单调递增:保证下一个ID一定大于上一个ID,例如事务版本号、IM增量消息、排序等特殊需求。

  信息安全:如果ID是连续的,恶意用户的扒取工作就非常容易做了,直接按照顺序下载指定URL即可;如果是订单号就更危险了,竞对可以直接知道我们一天的单量。所以在一些应用场景下,会需要ID无规则、不规则。

  同时除了对ID号码自身的要求,业务还对ID号生成系统的可用性要求极高,想象一下,如果ID生成系统瘫痪,这就会带来一场灾难。

  由此总结下一个ID生成系统应该做到如下几点:

  平均延迟和TP999延迟都要尽可能低;

  可用性5个9;

  高QPS

  

  分布式系统唯一ID的实现方案

  1.UUID

  UUID(Universally Unique Identifier)的标准型式包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符,示例:550e8400-e29b-41d4-a716-446655440000,到目前为止业界一共有5种方式生成UUID,详情见IETF发布的UUID规范 A Universally Unique IDentifier (UUID) URN Namespace。

  UUID优点:

  性能非常高:本地生成,没有网络消耗。

  UUID缺点:

  不易于存储:UUID太长,16字节128位,通常以36长度的字符串表示,很多场景不适用;

  信息不安全:基于MAC地址生成UUID的算法可能会造成MAC地址泄露,这个漏洞曾被用于寻找梅丽莎病毒的制作者位置;

  ID作为主键时在特定的环境会存在一些问题,比如做DB主键的场景下,UUID就非常不适用。

  

  2.数据库生成ID

  以MySQL举例,利用给字段设置auto_increment_increment和auto_increment_offset来保证ID自增,每次业务使用下列SQL读写MySQL得到ID号。

  数据库生成ID优点:

  非常简单,利用现有数据库系统的功能实现,成本小,有DBA专业维护。

  ID号单调自增,可以实现一些对ID有特殊要求的业务。

  数据库生成ID缺点:

  强依赖DB,当DB异常时整个系统不可用,属于致命问题。配置主从复制可以尽可能的增加可用性,但是数据一致性在特殊情况下难以保证。主从切换时的不一致可能会导致重复发号。

  ID发号性能瓶颈限制在单台MySQL的读写性能。

  

  3.Redis生成ID

  当使用数据库来生成ID性能不够要求的时候,我们可以尝试使用Redis来生成ID。

  这主要依赖于Redis是单线程的,所以也可以用生成全局唯一的ID。可以用Redis的原子操作 INCR和INCRBY来实现。

  比较适合使用Redis来生成每天从0开始的流水号。比如订单号=日期+当日自增长号。可以每天在Redis中生成一个Key,使用INCR进行累加。

  Redis生成ID优点:

  1)不依赖于数据库,灵活方便,且性能优于数据库。

  2)数字ID天然排序,对分页或者需要排序的结果很有帮助。

  

  Redis生成ID缺点:

  1)如果系统中没有Redis,还需要引入新的组件,增加系统复杂度。

  2)需要编码和配置的工作量比较大。

  

  4.利用zookeeper生成唯一ID

  zookeeper主要通过其znode数据版本来生成序列号,可以生成32位和64位的数据版本号,客户端可以使用这个版本号来作为唯一的序列号。

  很少会使用zookeeper来生成唯一ID。主要是由于需要依赖zookeeper,并且是多步调用API,如果在竞争较大的情况下,需要考虑使用分布式锁。因此,性能在高并发的分布式环境下,也不甚理想。

  

  5.snowflake雪花算法生成ID

  这种方案大致来说是一种以划分命名空间(UUID也算,由于比较常见,所以单独分析)来生成ID的一种算法,这种方案把64-bit分别划分成多段,分开来标示机器、时间等,比如在snowflake中的64-bit分别表示如下图(图片来自网络)所示:

  41-bit的时间可以表示(1L 41)/(1000L*3600*24*365)=69年的时间,10-bit机器可以分别表示1024台机器。如果我们对IDC划分有需求,还可以将10-bit分5-bit给IDC,分5-bit给工作机器。这样就可以表示32个IDC,每个IDC下可以有32台机器,可以根据自身需求定义。12个自增序列号可以表示2^12个ID,理论上snowflake方案的QPS约为409.6w/s,这种分配方式可以保证在任何一个IDC的任何一台机器在任意毫秒内生成的ID都是不同的。

  雪花算法ID优点:

  毫秒数在高位,自增序列在低位,整个ID都是趋势递增的。

  不依赖数据库等第三方系统,以服务的方式部署,稳定性更高,生成ID的性能也是非常高的。

  可以根据自身业务特性分配bit位,非常灵活。

  雪花算法ID缺点:

  强依赖机器时钟,如果机器上时钟回拨,会导致发号重复或者服务会处于不可用状态。

  以上

  陈睿mikechen,10年+大厂架构经验,《BAT架构技术500期》系列文章作者,专注于互联网架构技术。

  阅读mikechen的互联网架构更多技术文章合集

  Java并发JVMMySQLSpringRedis分布式高并发

  以上就是分布式ID详解(5种分布式ID生成方案)(分布式id解决方案)的详细内容,想要了解更多 分布式ID详解(5种分布式ID生成方案)的内容,请持续关注盛行IT软件开发工作室。

郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。

留言与评论(共有 条评论)
   
验证码: