这些JDK8 新特性,我还是第一次听说(jdk8新特性lambda)

  本篇文章为你整理了这些JDK8 新特性,我还是第一次听说(jdk8新特性lambda)的详细内容,包含有jdk8新功能 jdk8新特性lambda jdk8介绍 jdk8到jdk15新特性 这些JDK8 新特性,我还是第一次听说,希望能帮助你了解 这些JDK8 新特性,我还是第一次听说。

  什么是函数式接口?简单来说就是只有一个抽象函数的接口。为了使得函数式接口的定义更加规范,java8 提供了@FunctionalInterface 注解告诉编译器在编译器去检查函数式接口的合法性,以便在编译器在编译出错时给出提示。为了更加规范定义函数接口,给出如下函数式接口定义规则:

  
可以看出函数式接口的编写定义非常简单,不知道大家有没有注意到,其实我们经常会用到函数式接口,如Runnable 接口,它就是一个函数式接口:

  

COPY@FunctionalInterface

 

  public interface Runnable {

   * When an object implementing interface code Runnable /code is used

   * to create a thread, starting the thread causes the objects

   * code run /code method to be called in that separately executing

   * thread.

   * p

   * The general contract of the method code run /code is that it may

   * take any action whatsoever.

   * @see java.lang.Thread#run()

   public abstract void run();

  

 

  过去我们会使用匿名内部类来实现线程的执行体:

  

COPYnew Thread(new Runnable() {

 

   @Override

   public void run() {

   System.out.println("Hello FunctionalInterface");

   }).start();

  

 

  现在我们使用Lambda 表达式,这里函数式接口的使用没有体现函数式编程思想,这里输出字符到标准输出流中,产生了副作用,起到了简化代码的作用,当然还有装B。

  

COPYnew Thread(()- {

 

   System.out.println("Hello FunctionalInterface");

   }).start();

  

 

  Java8 util.function 包下自带了43个函数式接口,大体分为以下几类:

  
* Returns a composed {@code Consumer} that performs, in sequence, this

   * operation followed by the {@code after} operation. If performing either

   * operation throws an exception, it is relayed to the caller of the

   * composed operation. If performing this operation throws an exception,

   * the {@code after} operation will not be performed.

   * @param after the operation to perform after this operation

   * @return a composed {@code Consumer} that performs in sequence this

   * operation followed by the {@code after} operation

   * @throws NullPointerException if {@code after} is null

   default Consumer T andThen(Consumer ? super T after) {

   Objects.requireNonNull(after);

   return (T t) - { accept(t); after.accept(t); };

  

 

 

  Consumer 接口中有accept 抽象方法,accept接受一个变量,也就是说你在使用这个函数式接口的时候,给你提供了数据,你只要接收使用就可以了;andThen 是一个默认方法,接受一个Consumer 类型,当你对一个数据使用一次还不够爽的时候,你还能再使用一次,当然你其实可以爽无数次,只要一直使用andThan方法。

  Function

  何为Function呢?比如电视机,给你带来精神上的愉悦,但是它需要用电啊,电视它把电转换成了你荷尔蒙,这就是Function,简单电说,Function 提供一种转换功能。

  

COPY@FunctionalInterface

 

  public interface Function T, R {

   * Applies this function to the given argument.

   * @param t the function argument

   * @return the function result

   R apply(T t);

   * Returns a composed function that first applies the {@code before}

   * function to its input, and then applies this function to the result.

   * If evaluation of either function throws an exception, it is relayed to

   * the caller of the composed function.

   * @param V the type of input to the {@code before} function, and to the

   * composed function

   * @param before the function to apply before this function is applied

   * @return a composed function that first applies the {@code before}

   * function and then applies this function

   * @throws NullPointerException if before is null

   * @see #andThen(Function)

   default V Function V, R compose(Function ? super V, ? extends T before) {

   Objects.requireNonNull(before);

   return (V v) - apply(before.apply(v));

   * Returns a composed function that first applies this function to

   * its input, and then applies the {@code after} function to the result.

   * If evaluation of either function throws an exception, it is relayed to

   * the caller of the composed function.

   * @param V the type of output of the {@code after} function, and of the

   * composed function

   * @param after the function to apply after this function is applied

   * @return a composed function that first applies this function and then

   * applies the {@code after} function

   * @throws NullPointerException if after is null

   * @see #compose(Function)

   default V Function T, V andThen(Function ? super R, ? extends V after) {

   Objects.requireNonNull(after);

   return (T t) - after.apply(apply(t));

   * Returns a function that always returns its input argument.

   * @param T the type of the input and output objects to the function

   * @return a function that always returns its input argument

   static T Function T, T identity() {

   return t -

  

 

  Function 接口 最主要的就是apply 函数,apply 接受T类型数据并返回R类型数据,就是将T类型的数据转换成R类型的数据,它还提供了compose、andThen、identity 三个默认方法,compose 接受一个Function,andThen也同样接受一个Function,这里的andThen 与Consumer 的andThen 类似,在apply之后在apply一遍,compose 则与之相反,在apply之前先apply(这两个apply具体处理内容一般是不同的),identity 起到了类似海关的作用,外国人想要运货进来,总得交点税吧,然后货物才能安全进入中国市场,当然了想不想收税还是你说了算的。

  Operator

  可以简单理解成算术中的各种运算操作,当然不仅仅是运算这么简单,因为它只定义了运算这个定义,但至于运算成什么样你说了算。由于没有最基础的Operator,这里将通过 BinaryOperator、IntBinaryOperator来理解Operator 函数式接口,先从简单的IntBinaryOperator开始。

  IntBinaryOperator

  从名字可以知道,这是一个二元操作,并且是Int 类型的二元操作,那么这个接口可以做什么呢,除了加减乘除,还可以可以实现平方(两个相同int 数操作起来不就是平方吗),还是先看看它的定义吧:

  

@FunctionalInterface

 

  public interface IntBinaryOperator {

   * Applies this operator to the given operands.

   * @param left the first operand

   * @param right the second operand

   * @return the operator result

   int applyAsInt(int left, int right);

  

 

  IntBinaryOperator 接口内只有一个applyAsInt 方法,其接收两个int 类型的参数,并返回一个int 类型的结果,其实这个跟Function 接口的apply 有点像,但是这里限定了,只能是int类型。

  BinaryOperator

  BinaryOperator 二元操作,看起来它和IntBinaryOperator 是父子关系,实际上这两者没有半点关系,但他们在功能上还是有相似之处的:

  

COPY@FunctionalInterface

 

  public interface BinaryOperator T extends BiFunction T,T,T {

   * Returns a {@link BinaryOperator} which returns the lesser of two elements

   * according to the specified {@code Comparator}.

   * @param T the type of the input arguments of the comparator

   * @param comparator a {@code Comparator} for comparing the two values

   * @return a {@code BinaryOperator} which returns the lesser of its operands,

   * according to the supplied {@code Comparator}

   * @throws NullPointerException if the argument is null

   public static T BinaryOperator T minBy(Comparator ? super T comparator) {

   Objects.requireNonNull(comparator);

   return (a, b) - comparator.compare(a, b) = 0 ? a : b;

   * Returns a {@link BinaryOperator} which returns the greater of two elements

   * according to the specified {@code Comparator}.

   * @param T the type of the input arguments of the comparator

   * @param comparator a {@code Comparator} for comparing the two values

   * @return a {@code BinaryOperator} which returns the greater of its operands,

   * according to the supplied {@code Comparator}

   * @throws NullPointerException if the argument is null

   public static T BinaryOperator T maxBy(Comparator ? super T comparator) {

   Objects.requireNonNull(comparator);

   return (a, b) - comparator.compare(a, b) = 0 ? a : b;

  

 

  BinaryOperator 是 BiFunction 生的,而IntBinaryOperator 是从石头里蹦出来的,BinaryOperator 自身定义了minBy、maxBy默认方法,并且参数都是Comparator,就是根据传入的比较器的比较规则找出最小最大的数据。

  Predicate

  断言、判断,对输入的数据根据某种标准进行评判,最终返回boolean值:

  

COPY@FunctionalInterface

 

  public interface Predicate T {

   * Evaluates this predicate on the given argument.

   * @param t the input argument

   * @return {@code true} if the input argument matches the predicate,

   * otherwise {@code false}

   boolean test(T t);

   * Returns a composed predicate that represents a short-circuiting logical

   * AND of this predicate and another. When evaluating the composed

   * predicate, if this predicate is {@code false}, then the {@code other}

   * predicate is not evaluated.

   * p Any exceptions thrown during evaluation of either predicate are relayed

   * to the caller; if evaluation of this predicate throws an exception, the

   * {@code other} predicate will not be evaluated.

   * @param other a predicate that will be logically-ANDed with this

   * predicate

   * @return a composed predicate that represents the short-circuiting logical

   * AND of this predicate and the {@code other} predicate

   * @throws NullPointerException if other is null

   default Predicate T and(Predicate ? super T other) {

   Objects.requireNonNull(other);

   return (t) - test(t) other.test(t);

   * Returns a predicate that represents the logical negation of this

   * predicate.

   * @return a predicate that represents the logical negation of this

   * predicate

   default Predicate T negate() {

   return (t) - !test(t);

   * Returns a composed predicate that represents a short-circuiting logical

   * OR of this predicate and another. When evaluating the composed

   * predicate, if this predicate is {@code true}, then the {@code other}

   * predicate is not evaluated.

   * p Any exceptions thrown during evaluation of either predicate are relayed

   * to the caller; if evaluation of this predicate throws an exception, the

   * {@code other} predicate will not be evaluated.

   * @param other a predicate that will be logically-ORed with this

   * predicate

   * @return a composed predicate that represents the short-circuiting logical

   * OR of this predicate and the {@code other} predicate

   * @throws NullPointerException if other is null

   default Predicate T or(Predicate ? super T other) {

   Objects.requireNonNull(other);

   return (t) - test(t) other.test(t);

   * Returns a predicate that tests if two arguments are equal according

   * to {@link Objects#equals(Object, Object)}.

   * @param T the type of arguments to the predicate

   * @param targetRef the object reference with which to compare for equality,

   * which may be {@code null}

   * @return a predicate that tests if two arguments are equal according

   * to {@link Objects#equals(Object, Object)}

   static T Predicate T isEqual(Object targetRef) {

   return (null == targetRef)

   ? Objects::isNull

   : object - targetRef.equals(object);

  

 

  Predicate的test 接收T类型的数据,返回 boolean 类型,即对数据进行某种规则的评判,如果符合则返回true,否则返回false;Predicate接口还提供了 and、negate、or,与 取反 或等,isEqual 判断两个参数是否相等等默认函数。

  Supplier

  生产、提供数据:

  

COPY@FunctionalInterface

 

  public interface Supplier T {

   * Gets a result.

   * @return a result

   T get();

  

 

  非常easy,get方法返回一个T类数据,可以提供重复的数据,或者随机种子都可以,就这么简单。

  函数式接口实战

  Consumer

  Consumer 用的太多了,不想说太多,如下:

  

COPYpublic class Main {

 

   public static void main(String[] args) {

   Stream.of(1,2,3,4,5,6)

   .forEach(integer - System.out.println(integer)); //输出1,2,3,4,5,6

  

 

  这里使用标准输出,还是产生了副作用,但是这种程度是可以允许的

  Function

  转换,将字符串转成长度

  

COPYpublic class Main {

 

   public static void main(String[] args) {

   Stream.of("hello","FunctionalInterface")

   .map(e- e.length())

   .forEach(System.out::println);

  

 

  运算

  

COPYpublic class FunctionTest {

 

   public static void main(String[] args) {

   public static void main(String[] args) {

   Function Integer, Integer square = integer - integer * integer; //定义平方运算

   List Integer list = new ArrayList ();

   list.add(1);

   list.add(2);

   list.add(3);

   list.add(4);

  
list.stream().map(square.andThen(square.compose(e- e/2))) //先平方然后除2再平方

   .forEach(System.out::println);

  

 

  结果如下

  

COPY1

 

  ------

  ------

  

 

  Operator

  BinaryOperator

  这里实现找最大值:

  

COPYpublic class BinaryOperatorTest {

 

   public static void main(String[] args) {

   Stream.of(2,4,5,6,7,1)

   .reduce(BinaryOperator.maxBy(Comparator.comparingInt(Integer::intValue))).ifPresent(System.out::println);

  

 

  IntOperator

  这里实现累加功能:

  

COPYpublic class BinaryOperatorTest {

 

   public static void main(String[] args) {

   IntBinaryOperator intBinaryOperator = (e1, e2)- e1+e2; //定义求和二元操作

   IntStream.of(2,4,5,6,7,1)

   .reduce(intBinaryOperator).ifPresent(System.out::println);

  

 

  Predicate

  筛选出大于0最小的两个数

  

COPYpublic class Main {

 

   public static void main(String[] args) {

   IntStream.of(200,45,89,10,-200,78,94)

   .filter(e- e 0) //过滤小于0的数

   .sorted() //自然顺序排序

   .limit(2) //取前两个

   .forEach(System.out::println);

  

 

  Supplier

  这里一直生产2这个数字,为了能停下来,使用limit

  

COPYpublic class Main {

 

   public static void main(String[] args) {

   Stream.generate(()- 2)

   .limit(10)

   .forEach(System.out::println);

  

 

  输出结果

  

COPY2

 

  

 

  Java8的Stream 基本上都是使用util.function包下的函数式接口来实现函数式编程的,而函数式接口也就只分为 Function、Operator、Consumer、Predicate、Supplier 这五大类,只要能理解掌握最基础的五大类用法,其他变种也能触类旁通。

  本文由传智教育博学谷狂野架构师教研团队发布。

  如果本文对您有帮助,欢迎关注和点赞;如果您有任何建议也可留言评论或私信,您的支持是我坚持创作的动力。

  转载请注明出处!

  以上就是这些JDK8 新特性,我还是第一次听说(jdk8新特性lambda)的详细内容,想要了解更多 这些JDK8 新特性,我还是第一次听说的内容,请持续关注盛行IT软件开发工作室。

郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。

留言与评论(共有 条评论)
   
验证码: