GroupBy · ApacheDruid中文技术文档(group by distribute by)

  本篇文章为你整理了GroupBy · ApacheDruid中文技术文档(group by distribute by)的详细内容,包含有group by shop group by distribute by group by案例 groupby使用方法 GroupBy · ApacheDruid中文技术文档,希望能帮助你了解 GroupBy · ApacheDruid中文技术文档。

   dimensions : [ country , device ],

   limitSpec : { type : default , limit : 5000, columns : [ country , data_transfer ] },

   filter : {

   type : and ,

   fields : [

   { type : selector , dimension : carrier , value : AT T },

   { type : or ,

   fields : [

   { type : selector , dimension : make , value : Apple },

   { type : selector , dimension : make , value : Samsung }

   aggregations : [

   { type : longSum , name : total_usage , fieldName : user_count },

   { type : doubleSum , name : data_transfer , fieldName : data_transfer }

   postAggregations : [

   { type : arithmetic ,

   name : avg_usage ,

   fn : / ,

   fields : [

   { type : fieldAccess , fieldName : data_transfer },

   { type : fieldAccess , fieldName : total_usage }

   intervals : [ 2012-01-01T00:00:00.000/2012-01-03T00:00:00.000 ],

   having : {

   type : greaterThan ,

   aggregation : total_usage ,

   value : 100

  

 

 

   GroupBy

  
n*m 5000 n country m device 2012-01-01 2012-01-03 sample_datasource 100 longSum total_usage country device double total_usage data_transfer

  

[

 

   version : v1 ,

   timestamp : 2012-01-01T00:00:00.000Z ,

   event : {

   country : some_dim_value_one ,

   device : some_dim_value_two ,

   total_usage : some_value_one ,

   data_transfer : some_value_two ,

   avg_usage : some_avg_usage_value

   version : v1 ,

   timestamp : 2012-01-01T00:00:12.000Z ,

   event : {

   dim1 : some_other_dim_value_one ,

   dim2 : some_other_dim_value_two ,

   sample_name1 : some_other_value_one ,

   sample_name2 : some_other_value_two ,

   avg_usage : some_other_avg_usage_value

  

 

   GroupBy

  GroupBy t1 t3 tags GroupBy row1 t1 t2 t3 dimensionSpec,

   subtotalSpec

   subtotalsSpec dimensions outputName dimensions groupBy

  

{

 

   type : groupBy ,

   dimensions : [

   type : default ,

   dimension : d1col ,

   outputName : D1

   type : extraction ,

   dimension : d2col ,

   outputName : D2 ,

   extractionFn : extraction_func

   type : lookup ,

   dimension : d3col ,

   outputName : D3 ,

   name : my_lookup

   subtotalsSpec :[ [ D1 , D2 , D3 ], [ D1 , D3 ], [ D3 ]],

  

 

   dimensions [ D1 D2 D3 ] [ D1 D3 ] [ D3 ] 3 groupBy DimensionSpec :

  

[

 

   version : v1 ,

   timestamp : t1 ,

   event : { D1 : .. , D2 : .. , D3 : .. }

   version : v1 ,

   timestamp : t2 ,

   event : { D1 : .. , D2 : .. , D3 : .. }

   version : v1 ,

   timestamp : t1 ,

   event : { D1 : .. , D3 : .. }

   version : v1 ,

   timestamp : t2 ,

   event : { D1 : .. , D3 : .. }

   version : v1 ,

   timestamp : t1 ,

   event : { D3 : .. }

   version : v1 ,

   timestamp : t2 ,

   event : { D3 : .. }

  

 

  
v2 , Broker Broker N-way Broker

   v1 Historical Realtime MiddleManager Druid Broker Druid Broker Broker Broker

  v1 v2

   API

  groupBy v1 maxResults groupBy v2 groupBy v1 groupBy v2 v1 v2

  groupBy v1 groupBy v2 1/4

  groupBy v1 Broker Historical groupBy v2 Historical

  groupBy v2

  
druid.processing.buffer.sizeBytes, , druid.processing.numMergeBuffers groupBy

  druid.query.groupBy.maxMergingDictionarySize,

  druid.query.groupBy.maxOnDiskStorage: 0

   maxOnDiskStorage 0 Resource limit exceeded

   maxOnDiskStorage 0 maxOnDiskStorage Resource limit exceeded

   groupBy v2 druid.processing.numMergeBuffers ) Druid

  Broker groupBy query subtotals groupBy

  Historical groupBy

   groupBy v1 druid.query.groupBy.maxResults Resource limit exceeded JVM

  Druid groupBy limit Historical Broker orderBy orderBy limitPushDown , , topN , forceLimitPushDown

  groupBy v2 bucket

   bucket 1024 0.7 bufferGrouperInitialBuckets bufferGrouperMaxLoadFactor

   Historical Broker N Historical druid.processing.numThreads ) http Broker

   groupBy Druid GroupBy timeseries topN

   groupBy groupBy numParallelCombineThreads

   groupBy v2 intermediateCombineDegree

   Historical groupBy v2

   groupBy

   Timeseries groupBy

   TopN groupBy

   GroupBy

   groupby( query ) v1 v2 broker groupBy , v1 Druid v2 Broker

   groupBy Broker Historical MiddleManager runtime.properties,

  groupBy v2

  
druid.query.groupBy.numParallelCombineThreads

   1 druid.query.groupBy.numParallelCombineThreads druid.processing.numThreads

  
applyLimitPushDownToSegment

   Broker limit Historical Peon druid.query.groupBy.applyLimitPushDownToSegment

  以上就是GroupBy · ApacheDruid中文技术文档(group by distribute by)的详细内容,想要了解更多 GroupBy · ApacheDruid中文技术文档的内容,请持续关注盛行IT软件开发工作室。

郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。

留言与评论(共有 条评论)
   
验证码: