本篇文章为你整理了LinkedBlockingQueue详解(linkedblockingqueue.poll())的详细内容,包含有linkedblockedqueue linkedblockingqueue.poll() linkedblockingdeque linkedblockingqueue和linkedblockingdeque LinkedBlockingQueue详解,希望能帮助你了解 LinkedBlockingQueue详解。
LinkedBlockingQueue介绍
【1】LinkedBlockingQueue是一个基于链表实现的阻塞队列,默认情况下,该阻塞队列的大小为Integer.MAX_VALUE,由于这个数值特别大,所以 LinkedBlockingQueue 也被称作无界队列,代表它几乎没有界限,队列可以随着元素的添加而动态增长,但是如果没有剩余内存,则队列将抛出OOM错误。所以为了避免队列过大造成机器负载或者内存爆满的情况出现,我们在使用的时候建议手动传一个队列的大小。
【2】LinkedBlockingQueue内部由单链表实现,只能从head取元素,从tail添加元素。LinkedBlockingQueue采用两把锁的锁分离技术实现入队出队互不阻塞,添加元素和获取元素都有独立的锁,也就是说LinkedBlockingQueue是读写分离的,读写操作可以并行执行。
LinkedBlockingQueue使用
//指定队列的大小创建有界队列
BlockingQueue Integer boundedQueue = new LinkedBlockingQueue (100);
//无界队列
BlockingQueue Integer unboundedQueue = new LinkedBlockingQueue ();
LinkedBlockingQueue的源码分析
【1】属性值
// 容量,指定容量就是有界队列
private final int capacity;
// 元素数量,用原子操作类的原因在于有两个线程都会操作需要保证可见性
private final AtomicInteger count = new AtomicInteger();
// 链表头 本身是不存储任何元素的,初始化时item指向null
transient Node E head;
// 链表尾
private transient Node E last;
// take锁 锁分离,提高效率
private final ReentrantLock takeLock = new ReentrantLock();
// notEmpty条件
// 当队列无元素时,take锁会阻塞在notEmpty条件上,等待其它线程唤醒
private final Condition notEmpty = takeLock.newCondition();
// put锁
private final ReentrantLock putLock = new ReentrantLock();
// notFull条件
// 当队列满了时,put锁会会阻塞在notFull上,等待其它线程唤醒
private final Condition notFull = putLock.newCondition();
//典型的单链表结构
static class Node E {
E item; //存储元素
Node E next; //后继节点 单链表结构
Node(E x) { item = x; }
}
【2】构造函数
public LinkedBlockingQueue() {
// 如果没传容量,就使用最大int值初始化其容量
this(Integer.MAX_VALUE);
public LinkedBlockingQueue(int capacity) {
if (capacity = 0) throw new IllegalArgumentException();
this.capacity = capacity;
// 初始化head和last指针为空值节点
last = head = new Node E (null);
public LinkedBlockingQueue(Collection ? extends E c) {
this(Integer.MAX_VALUE);
final ReentrantLock putLock = this.putLock;
putLock.lock(); // 为保证可见性而加的锁
try {
int n = 0;
for (E e : c) {
if (e == null)
throw new NullPointerException();
if (n == capacity)
throw new IllegalStateException("Queue full");
enqueue(new Node E (e));
++n;
count.set(n);
} finally {
putLock.unlock();
}
【3】核心方法分析
1)入队put方法
public void put(E e) throws InterruptedException {
// 不允许null元素
if (e == null) throw new NullPointerException();
int c = -1;
// 新建一个节点
Node E node = new Node E (e);
final ReentrantLock putLock = this.putLock;
final AtomicInteger count = this.count;
// 使用put锁加锁
putLock.lockInterruptibly();
try {
// 如果队列满了,就阻塞在notFull上等待被其它线程唤醒(阻塞生产者线程)
while (count.get() == capacity) {
notFull.await();
// 队列不满,就入队
enqueue(node);
c = count.getAndIncrement();// 队列长度加1,返回原值
// 如果现队列长度小于容量,notFull条件队列转同步队列,准备唤醒一个阻塞在notFull条件上的线程(可以继续入队)
// 这里为啥要唤醒一下呢?因为存在情况是,没人获取时,队列满了而且还不断有人塞数据,此时会一大批线程被阻塞,现在有空余位置了,应该被唤醒
if (c + 1 capacity)
notFull.signal();
} finally {
putLock.unlock(); // 真正唤醒生产者线程
// 如果原队列长度为0,现在加了一个元素后立即唤醒阻塞在notEmpty上的线程
if (c == 0)
signalNotEmpty();
private void enqueue(Node E node) {
// 直接加到last后面,last指向入队元素
last = last.next = node;
private void signalNotEmpty() {
final ReentrantLock takeLock = this.takeLock;
takeLock.lock();// 加take锁
try {
notEmpty.signal();// notEmpty条件队列转同步队列,准备唤醒阻塞在notEmpty上的线程
} finally {
takeLock.unlock(); // 真正唤醒消费者线程
}
2)出队take方法
public E take() throws InterruptedException {
E x;
int c = -1;
final AtomicInteger count = this.count;
final ReentrantLock takeLock = this.takeLock;
// 使用takeLock加锁
takeLock.lockInterruptibly();
try {
// 如果队列无元素,则阻塞在notEmpty条件上(消费者线程阻塞)
while (count.get() == 0) {
notEmpty.await();
// 否则,出队
x = dequeue();
c = count.getAndDecrement();//长度-1,返回原值
if (c 1)// 如果取之前队列长度大于1,notEmpty条件队列转同步队列,准备唤醒阻塞在notEmpty上的线程,原因与入队同理
notEmpty.signal();
} finally {
takeLock.unlock(); // 真正唤醒消费者线程
// 为什么队列是满的才唤醒阻塞在notFull上的线程呢?
// 因为唤醒是需要加putLock的,这是为了减少锁的次数,所以,这里索性在放完元素就检测一下,未满就唤醒其它notFull上的线程,
// 这也是锁分离带来的代价
// 如果取之前队列长度等于容量(已满),则唤醒阻塞在notFull的线程
if (c == capacity)
signalNotFull();
return x;
private E dequeue() {
// head节点本身是不存储任何元素的
// 这里把head删除,并把head下一个节点作为新的值
// 并把其值置空,返回原来的值
Node E h = head;
Node E first = h.next;
h.next = h; // 方便GC
head = first;
E x = first.item;
first.item = null;
return x;
private void signalNotFull() {
final ReentrantLock putLock = this.putLock;
putLock.lock();
try {
notFull.signal();// notFull条件队列转同步队列,准备唤醒阻塞在notFull上的线程
} finally {
putLock.unlock(); // 解锁,这才会真正的唤醒生产者线程
}
LinkedBlockingQueue总结
【1】无界阻塞队列,可以指定容量,默认为 Integer.MAX_VALUE,先进先出,存取互不干扰
【2】数据结构:链表(可以指定容量,默认为Integer.MAX_VALUE,内部类Node存储元素)
【3】锁分离:存取互不干扰,存取操作的是不同的Node对象(takeLock【取Node节点保证前驱后继不乱】,putLock【存Node节点保证前驱后继不乱】,删除时则两个锁一起加)【这是最大的亮点】
【4】阻塞对象(notEmpty【出队:队列count=0,无元素可取时,阻塞在该对象上】,notFull【入队:队列count=capacity,放不进元素时,阻塞在该对象上】)
【5】入队,从队尾入队,由last指针记录。
【6】出队,从队首出队,由head指针记录。
【7】线程池中采用LinkedBlockingQueue而不采用ArrayBlockingQueue的原因便是因为锁分离带来了性能的提升,大大提高队列的吞吐量。
以上就是LinkedBlockingQueue详解(linkedblockingqueue.poll())的详细内容,想要了解更多 LinkedBlockingQueue详解的内容,请持续关注盛行IT软件开发工作室。
郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。