本篇文章为你整理了原生查询组件 · ApacheDruid中文技术文档(原生资源数据库)的详细内容,包含有原生sql查询 原生资源数据库 原生ip查询方法 原生http 原生查询组件 · ApacheDruid中文技术文档,希望能帮助你了解 原生查询组件 · ApacheDruid中文技术文档。
[!WARNING]
Apache Druid Druid SQL Druid SQL SQL
Filter JSON SQL WHERE Apache Druid
filtered-aggregator having-filter
(Selector Filter)
filter : { type : selector , dimension : dimension_string , value : dimension_value_string }
WHERE dimension_string = dimension_value_string
(Column Comparison Filter)
filter : { type : columnComparison , dimensions : [ dimension_a , dimension_b ] }
WHERE dimension_a = dimension_b
dimensions DimensionSpecs list
(Regular expression Filter)
Java
filter : { type : regex , dimension : dimension_string , pattern : pattern_string }
(Logical expression Filter)
AND
AND
filter : { type : and , fields : [ filter , filter , ...] }
fields
OR
OR
filter : { type : or , fields : [ filter , filter , ...] }
fields
NOT
NOT
filter : { type : not , field : filter }
field
JavaScript
JavaScript js true
JavaScript true false
{
type : javascript ,
dimension : dimension_string ,
function : function(value) { ... }
name bar foo
{
type : javascript ,
dimension : name ,
function : function(x) { return(x = bar x = foo ) }
JavaScript
[!WARNING]
JavaScript Druid JavaScript JavaScript
(Extraction Filter)
[!WARNING]
input_key=output_value output_value value input_key
product [product_1, product_3, product_5]
{
filter : {
type : extraction ,
dimension : product ,
value : bar_1 ,
extractionFn : {
type : lookup ,
lookup : {
type : map ,
map : {
product_1 : bar_1 ,
product_5 : bar_1 ,
product_3 : bar_1
(Search Filter)
{
filter : {
type : search ,
dimension : product ,
query : {
type : insensitive_contains ,
value : foo
In SQL
SELECT COUNT(*) AS Count FROM `table` WHERE `outlaw` IN ( Good , Bad , Ugly )
In
{
type : in ,
dimension : outlaw ,
values : [ Good , Bad , Ugly ]
In
values In dimension values In true
Like
Like SQL LIKE % ( ) _ ( )
String
lexicographic , alphanumeric , numeric , strlen , version Sorting-Orders
lexicographic
2014-10-01T00:00:00.000Z/2014-10-07T00:00:00.000Z ,
2014-11-15T00:00:00.000Z/2014-11-16T00:00:00.000Z
OR
{
type : or ,
fields : [
type : bound ,
dimension : __time ,
lower : 1412121600000 ,
lowerStrict : false,
upper : 1412640000000 ,
upperStrict : true,
ordering : numeric
type : bound ,
dimension : __time ,
lower : 1416009600000 ,
lowerStrict : false,
upper : 1416096000000 ,
upperStrict : true,
ordering : numeric
spatial extractionFn
lookup bar_1
product [product_1, product_3, product_5]
{
filter : {
type : selector ,
dimension : product ,
value : bar_1 ,
extractionFn : {
type : lookup ,
lookup : {
type : map ,
map : {
product_1 : bar_1 ,
product_5 : bar_1 ,
product_3 : bar_1
Druid
myFloatColumn = 10.1:
filter : {
type : selector ,
dimension : myFloatColumn ,
value : 10.1
10 = myFloatColumn 20:
filter : {
type : bound ,
dimension : myFloatColumn ,
ordering : numeric ,
lower : 10 ,
lowerStrict : false,
upper : 20 ,
upperStrict : true
__time
filter : {
type : selector ,
dimension : __time ,
value : 124457387532
filter : {
type : selector ,
dimension : __time ,
value : Friday ,
extractionFn : {
type : timeFormat ,
format : EEEE ,
timeZone : America/New_York ,
locale : en
ISO-8601
{
type : interval ,
dimension : __time ,
intervals : [
2014-10-01T00:00:00.000Z/2014-10-07T00:00:00.000Z ,
2014-11-15T00:00:00.000Z/2014-11-16T00:00:00.000Z
True
true
{ type : true }
以上就是原生查询组件 · ApacheDruid中文技术文档(原生资源数据库)的详细内容,想要了解更多 原生查询组件 · ApacheDruid中文技术文档的内容,请持续关注盛行IT软件开发工作室。
郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。