python内置函数int,python定义int类型
本文主要介绍Python内置的type int源代码学习。有需要的朋友可以借鉴一下,希望能有所帮助。祝大家进步很大,早日升职加薪。
目录
1 int对象设计1.1 PyLongObject1.2整数布局1.3小整数静态对象池1.4示例2大整数运算2.1整数运算概述2.2大整数运算过程1.long_add()源代码:2 .绝对值加法x_add()3其他大整数去浮点溢出《对Python内置类型的深度理解》将从源代码的角度给大家介绍Python。问题:对于C语言,运行下面这个程序的结果是什么?是1000000000000吗?
#包含stdio.h
int main(int argc,char *argv[])
{
int value=1000000
打印( %d\n ,值*值)
}
输出如下所示:
-727379968
在计算机系统中,如果某一类变量的存储空间是固定的,那么它所能表示的数值范围是有限的。以int为例。在C语言中,这种类型变量的长度为32位,可以表示的整数范围为-2147483648~2147483647。10000000000000明显超出范围,即发生了整数溢出。但是对于Python中的int,这种情况不会发生:
1000000 * 1000000
1000000000000
10 ** 100
10000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1 int对象的设计
1.1 PyLongObject
int对象的结构:
typedef struct _ long object PyLongObject;
struct _longobject {
PyObject_VAR_HEAD
digit ob _ digit[1];
};
数字阵列
#if PYLONG_BITS_IN_DIGIT==30
typedef uint32 _ t digit
//.
#elif PYLONG_BITS_IN_DIGIT==15
typedef无符号短数字;
//.
#endif
什么整数类型用于实现数字数组?Python提供两个版本,一个是32位unit32_t,一个是16位无符号short,可以通过宏定义指定。至于这样设计的原因,主要是出于内存方面的考虑。对于范围小的整数,可以用16位整数,32位整数会很浪费。
(注:可以看到PYLONG_BITS_IN_DIGIT宏的值是30或者15,也就是说Python只用30位或者15位。为什么?——这是Python对加法和进位的考虑。如果全部32位都用来保存绝对值,那么为了保证加法不溢出(产生进位),需要在计算前强制转换为64位类型。不过牺牲了最高位之后,就不用再额外担心进位溢出了。那么,为什么要牺牲最高的2位来换取32位呢?可能是要和16位整数方案统一:如果选择16位整数,Python只用15位;30位用于32位。)
其实由于PyObject_VAR_HEAD头的存在,32位和16位的选择其实差别不大:
对象基本单元16位基本单元32位1
int对象结构图示如下:
对于比较大的整数,Python将其拆成若干部分,保存在ob_digit数组中。然而我们注意到在结构体定义中,ob_digit数组长度却固定为1,这是为什么呢?这里资料解释是:由于C语言中数组长度不是类型信息,我们可以根据实际需要为ob_digit数组分配足够的内存,并将其当成长度为n的数组操作。这也是C语言中一个常用的编程技巧。
但是根据我对C语言的理解,数组是由基址+偏移来确定位置的,初始长度为1的数组,后续如果强行去索引超过这个长度的位置,不是会出问题吗?不知道是我理解错了还是什么,这里后续还要进一步考证。
1.2 整数的布局
整数分为正数、负数和零,这三种不同整数的存储方式如下:
- 将整数的绝对值保存在ob_digit数组中
- ob_digit数组长度保存在ob_size字段,若整数为负,则ob_size为负数
- 整数零的ob_size为0,ob_digit数组为空
下面以五个典型的例子来介绍不同情况下的整数存储情况:
对于整数0,ob_size = 0,ob_digit为空,无需分配
对于整数10,其绝对值保存在ob_digit数组中,数组长度为1,ob_size字段为1
对于整数-10,其绝对值保存在ob_digit数组中,数组长度为1,ob_size字段为-1
对于整数1073741824(即2^30),由于Python只使用了32位的后30位,所以2^30次方需要两个数组元素来存储,整数数组的长度为2。绝对值这样计算:
2^0 * 0 + 2^30 * 1 = 1073741824
对于整数-4294967297(即-(2^32 + 1)),同样需要长度为2的数组,但ob_size字段为负数。绝对值这样计算:
2^0 * 1 + 2^30 * 4 = 4294967297
总结:ob_digit数组存储数据时,类似230进制计算(或215进制,取决于数组的类型)
1.3 小整数静态对象池
问题:通过前面章节的学习,我们知道整数对象是不可变对象,整数运算结果都是以新对象返回的:
>>> a = 1>>> id(a)
1497146464
>>> a += 1
>>> id(a)
1496146496
Python这样的设计会带来一个性能缺陷,程序运行时必定会有大量对象的创建销毁,即会带来大量的内存分配和回收消耗,严重影响性能。例如对于一个循环100次的for循环,就需要创建100个int对象,这显然是不能接受的。
对此,Python的解决方法是:预先将常用的整数对象创建好,以后备用,这就是小整数对象池。(和float一样运用池技术,但是稍有不同,这也是由int和float实际运用的差别导致的)
小整数对象池相关源码:
#ifndef NSMALLPOSINTS#define NSMALLPOSINTS 257
#endif
#ifndef NSMALLNEGINTS
#define NSMALLNEGINTS 5
#endif
static PyLongObject small_ints[NSMALLNEGINTS + NSMALLPOSINTS];
NSMALLPOSINTS宏规定了对象池正数个数(包括0),默认257个NSMALLNEGINTS宏规定了对象池负数个数,默认为5个small_ints是一个整数对象数组,保存预先创建好的小整数对象
以默认配置为例,Python启动后静态创建一个包含262个元素的整数数组,并依次初始化-5到-1,0,和1到256这些整数对象。小整数对象池结构如下:
1.4 示例
示例1:
>>> a = 1 + 0>>> b = 1 * 1
>>> id(a), id(b)
(1541936120048, 1541936120048)
由于1 + 0的计算结果为1,在小整数范围内,Python会直接从静态对象池中取出整数1;1 * 1也是同理。名字a和b其实都跟一个对象绑定(有关名字绑定的内容可以看这篇博客:Python源码学习笔记:Python作用域与名字空间),即小整数对象池中的整数1,因此它们的id相同。
示例2:
>>> c = 1000 + 0>>> d = 1000 * 1
>>> id(c), id(d)
(3085872130224, 3085872130256)
1000 + 0 和1000 * 1的计算结果都是1000,但由于1000不在小整数池范围内,Python会分别创建对象并返回,因此c和d绑定的对象id也就不同了。
注:这里大家如果使用Pycharm来运行的话就会发现它们的id是一样的:
这里的原因本质上是和字节码相关的,在IDLE中,每个命令都会单独去编译,而在Pycharm中是编译整个py文件,在同一上下文(这里同一上下文其实比较模糊,笔者水平有限,解释得也不太好)中的相同值的整数就是同一个对象,可以试着把字节码打印出来看一下(有关字节码的内容可以看下这篇博客:Python源码学习笔记:Python程序执行过程与字节码)。
2 大整数运算
问题:在之前我们了解到了整数对象的内部结构,对于Python如何应对整数溢出这个问题有了一个初步的认识。但是真正的难点在于大整数数学运算的实现。
2.1 整数运算概述
整数对象的运算由整数类型对象中的tp_as_number、tp_as_sequence、tp_as_mapping这三个字段所决定。整数类型对象PyLong_Type源码如下:(只列出部分字段)
PyTypeObject PyLong_Type = {PyVarObject_HEAD_INIT(&PyType_Type, 0)
"int", /* tp_name */
offsetof(PyLongObject, ob_digit), /* tp_basicsize */
sizeof(digit), /* tp_itemsize */
// ...
&long_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
// ...
};
整数对象仅支持数值型操作long_as_number:
static PyNumberMethods long_as_number = {(binaryfunc)long_add, /*nb_add*/
(binaryfunc)long_sub, /*nb_subtract*/
(binaryfunc)long_mul, /*nb_multiply*/
long_mod, /*nb_remainder*/
long_divmod, /*nb_divmod*/
long_pow, /*nb_power*/
(unaryfunc)long_neg, /*nb_negative*/
(unaryfunc)long_long, /*tp_positive*/
(unaryfunc)long_abs, /*tp_absolute*/
(inquiry)long_bool, /*tp_bool*/
(unaryfunc)long_invert, /*nb_invert*/
long_lshift, /*nb_lshift*/
(binaryfunc)long_rshift, /*nb_rshift*/
long_and, /*nb_and*/
long_xor, /*nb_xor*/
long_or, /*nb_or*/
long_long, /*nb_int*/
0, /*nb_reserved*/
long_float, /*nb_float*/
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
long_div, /* nb_floor_divide */
long_true_divide, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
long_long, /* nb_index */
};
至此,我们明确了整数对象支持的全部数学运算,以及对应的处理函数:(只列出部分函数)
整数对象、整数类型对象以及整数数学运算处理函数之间的关系:
2.2 大整数运算处理过程
以加法为例,来认识大整数运算的处理过程。
加法处理函数long_add()
1.long_add()源码:
static PyObject *long_add(PyLongObject *a, PyLongObject *b)
{
PyLongObject *z;
CHECK_BINOP(a, b);
if (Py_ABS(Py_SIZE(a)) <= 1 && Py_ABS(Py_SIZE(b)) <= 1) {
return PyLong_FromLong(MEDIUM_VALUE(a) + MEDIUM_VALUE(b));
}
if (Py_SIZE(a) < 0) {
if (Py_SIZE(b) < 0) {
z = x_add(a, b);
if (z != NULL) {
/* x_add received at least one multiple-digit int,
and thus z must be a multiple-digit int.
That also means z is not an element of
small_ints, so negating it in-place is safe. */
assert(Py_REFCNT(z) == 1);
Py_SIZE(z) = -(Py_SIZE(z));
}
}
else
z = x_sub(b, a);
}
else {
if (Py_SIZE(b) < 0)
z = x_sub(a, b);
else
z = x_add(a, b);
}
return (PyObject *)z;
}
主体逻辑如下:
- 第4行:定义变量z用于临时保存计算结果
- 第8~10行:如果两个对象数组长度均不超过1,用MEDIUM_VALUE宏将其转化成C整数进行运算(这种优化也是可以学习的)
- 第13~17行:如果两个整数均为负数,调用x_add计算两者绝对值之和,再将结果符号设置为负(16行处)
- 第20行:如果a为负数,b为正数,调用x_sub计算b和a的绝对值之差即为最终结果
- 第24行:如果a为正数,b为负数,调用x_sub计算a和b的绝对值之差即为最终结果
- 第26行:如果两个整数均为正数,调用x_add计算两个绝对值之和即为最终结果
因此,long_add函数实际上将整数加法转化成了绝对值加法x_add和绝对值减法x_sub,以及MEDIUM_VALUE。绝对值加法和绝对值减法不用考虑符号对计算结果的影响,实现较为简单,这是Python将整数运算转化成绝对值运算的原因。(这里也可以学习下)
大整数运算涉及到两个数组之间的加法,整数数值越大,整数对象底层数组就越长,运算开销也会越大。但是运算处理函数提供了一个快速通道:如果参与运算的整数对象底层数组长度均不超过1,直接将整数对象转化成C整数类型进行运算,性能耗损极小。满足这个条件的整数范围在-1073741823~1073747823之间,足以覆盖大部分运算情况了。
2.绝对值加法x_add()
下面我们来看一下Python是如何对数组进行加法运算的。x_add()源码:
/* Add the absolute values of two integers. */static PyLongObject *
x_add(PyLongObject *a, PyLongObject *b)
{
Py_ssize_t size_a = Py_ABS(Py_SIZE(a)), size_b = Py_ABS(Py_SIZE(b));
PyLongObject *z;
Py_ssize_t i;
digit carry = 0;
/* Ensure a is the larger of the two: */
if (size_a < size_b) {
{ PyLongObject *temp = a; a = b; b = temp; }
{ Py_ssize_t size_temp = size_a;
size_a = size_b;
size_b = size_temp; }
}
z = _PyLong_New(size_a+1);
if (z == NULL)
return NULL;
for (i = 0; i < size_b; ++i) {
carry += a->ob_digit[i] + b->ob_digit[i];
z->ob_digit[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
for (; i < size_a; ++i) {
carry += a->ob_digit[i];
z->ob_digit[i] = carry & PyLong_MASK;
carry >>= PyLong_SHIFT;
}
z->ob_digit[i] = carry;
return long_normalize(z);
}
源码分析:
第10~15行:如果a数组长度比较小,将a、b交换,数组长度较大的那个在前面(感觉做算法题有时候就需要交换下,方便统一处理)
第16~18行:创建新整数对象,用于保存计算结果(注意到长度必须要比a大,因为可能要进位)
第19~23行:遍历b底层数组,与a对应部分相机啊并保存在z中,需要注意到进位(可以看到这里是用按位与和右移进行计算的,通过位于算来处理也是很高效的,算法题中也比较常见)
第24~28行:遍历a底层数组的剩余部分,与进位相加后保存在z中,同样要注意进位运算
第29行:将进位写入z底层数组最高位单元中
第30行:标准化z,去除计算结果z底层数组中前面多余的0
3 其他
大整数转float溢出
至此,我们对int和float有了一定的认识,也自然会有一个问题:将大整数int转化为float时发生溢出怎么办?
示例:
>>>i = 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111>>> f = float(i)
Traceback (most recent call last):
File "<pyshell#1>", line 1, in <module>
f = float(i)
OverflowError: int too large to convert to float
由于float是有长度限制的,它的大小也是有上限的,因此当我们将一个很大的int转化为float时,如果超出上限就会报错。对此我们可以使用Decimal来解决:(这里只介绍了使用方式,具体原理大家可以去了解一下)
>>> from decimal import Decimal>>>d = Decimal(i)
>>>f2 = float(d)
>>> f2
inf
可以看到将i通过Decimal()转化后就不会报错了。
以上就是Python内建类型int源码学习的详细内容,更多关于Python内建类型int的资料请关注盛行IT软件开发工作室其它相关文章!
郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。