python周期性分析,python 周期函数
本文主要为大家介绍Python对象的生命周期源代码学习。有需要的朋友可以借鉴一下,希望能有所帮助。祝大家进步很大,早日升职加薪。
00-1010思考:1 C API2对象创建2.1创建对象的两种方式2.2按类型创建实例对象对象3对象的多态性4对象的行为5引用计数
目录
当我们输入这个语句时,Python是如何在内部创建这个对象的?
a=1.0
物体被使用后,销毁的时机是如何确定的?
下面,我们以一个基本类型的float为例,分析一个对象从创建到销毁的整个生命周期中的行为。
思考:
Python是用C写的,对外提供API,用户可以从C环境中与之交互,Python也大量使用这些API。C API分为两类:通用API和专用API。
泛型API:与类型无关,属于抽象对象层。这种API的参数是PyObject *,即可以处理任何类型的对象。以PyObject_Print为例:
//打印浮点对象
py object * fo=py float _ from double(3.14);
PyObject_Print(fo,stdout,0);
//打印一个整数对象
py object * lo=PyLong _ from long(100);
PyObject_Print(lo,stdout,0);
特定类型API:与类型相关,属于特定对象层。这种API只能作用于某些类型的对象。
1 C API
2 对象的创建
Python通常以两种方式创建对象:
通过C API,它主要用于内置类型
以浮点型为例。Python内部提供了PyFloat_FromDouble,这是一个特殊的C API。在这个接口中,内存被分配给PyFloatObject结构的变量,并且相关的字段被初始化:
对象*
PyFloat_FromDouble(double fval)
{
PyFloatObject * op=free _ list
如果(op!=NULL) {
free _ list=(PyFloatObject *)Py _ TYPE(op);
num free-;
}否则{
op=(PyFloatObject *)py object _ MALLOC(sizeof(PyFloatObject));
如果(!op)
返回PyErr _ no memory();
}
/* Inline PyObject_New */
(void)PyObject_INIT(op,py float _ Type);
op-ob _ fval=fval;
return(py object *)op;
}
类型对象主要用于自定义类型。
对于自定义类型,Python无法提前提供C API。在这种情况下,实例对象只能通过类型对象中包含的元数据(分配了多少内存,如何初始化等等)来创建。).
从类型对象创建实例对象是一个更通用的过程。对于内置类型,除了用C API创建对象,还可以用类型对象创建。以浮点类型为例,我们通过类型对象float创建了一个实例对象f:
f: float=float(3.123 )
2.1 两种创建对象的方式
思考:既然可以通过类型对象创建实例对象,那么在类型对象中就应该有相应的接口。
在PyType_Type中找到Tp_call字段:
PyTypeObj
ect PyType_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0)
"type", /* tp_name */
sizeof(PyHeapTypeObject), /* tp_basicsize */
sizeof(PyMemberDef), /* tp_itemsize */
(destructor)type_dealloc, /* tp_dealloc */
// ...
(ternaryfunc)type_call, /* tp_call */
// ...
};
因此,float(‘3.123’)在C层面就等价于:
PyFloat_Type.ob_type.tp_call(&PyFloat_Type, args. kwargs)
这里大家可以思考下为什么是PyFloat_Type.ob_type——因为我们在float(‘3.14’)中是通过float这个类型对象去创建一个浮点对象,而对象的通用方法是由它对应的类型管理的,自然float的类型就是type,所以我们要找的就是type的tp_call字段。
type_call函数的C源码:(只列出部分)
static PyObject *type_call(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *obj;
// ...
obj = type->tp_new(type, args, kwds);
obj = _Py_CheckFunctionResult((PyObject*)type, obj, NULL);
if (obj == NULL)
return NULL;
// ...
type = Py_TYPE(obj);
if (type->tp_init != NULL) {
int res = type->tp_init(obj, args, kwds);
if (res < 0) {
assert(PyErr_Occurred());
Py_DECREF(obj);
obj = NULL;
}
else {
assert(!PyErr_Occurred());
}
}
return obj;
}
其中有两个关键的步骤:(这两个步骤大家应该是很熟悉的)
- 调用类型对象的tp_new函数指针,用于申请内存;
- 如果类型对象的tp_init函数指针不为空,则会对对象进行初始化。
总结:(以float为例)
- 调用float,Python最终执行的是其类型对象type的tp_call指针指向的type_call函数。
- type_call函数调用float的tp_new函数为实例对象分配内存空间。
- type_call函数必要时进一步调用tp_init函数对实例对象进行初始化。
图示如下:
3 对象的多态性
通过类型对象创建实例对象,最后会落实到调用type_call函数,其中保存具体对象时,使用的是PyObject *obj,并没有通过一个具体的对象(例如PyFloatObject)来保存。这样做的好处是:可以实现更抽象的上层逻辑,而不用关心对象的实际类型和实现细节。(记得当初从C语言的面向过程向Java中的面向对象过度的时候,应该就是从结构体)
以对象哈希值计算为例,有这样一个函数接口:
Py_hash_tPyObject_Hash(PyObject *v)
{
// ...
}
对于浮点数对象和整数对象:
PyObject *fo = PyFloatObject_FromDouble(3.14);PyObject_Hash(fo);
PyObject *lo = PyLongObject_FromLong(100);
PyObject_Hash(lo);
可以看到,对于浮点数对象和整数对象,我们计算对象的哈希值时,调用的都是PyObject_Hash()这个函数,但是对象类型不同,其行为是有区别的,哈希值计算也是如此。
那么在PyObject_Hash函数内部是如何区分的呢?
PyObject_Hash()函数具体逻辑:
Py_hash_tPyObject_Hash(PyObject *v)
{
PyTypeObject *tp = Py_TYPE(v);
if (tp->tp_hash != NULL)
return (*tp->tp_hash)(v);
/* To keep to the general practice that inheriting
* solely from object in C code should work without
* an explicit call to PyType_Ready, we implicitly call
* PyType_Ready here and then check the tp_hash slot again
*/
if (tp->tp_dict == NULL) {
if (PyType_Ready(tp) < 0)
return -1;
if (tp->tp_hash != NULL)
return (*tp->tp_hash)(v);
}
/* Otherwise, the object cant be hashed */
return PyObject_HashNotImplemented(v);
}
函数会首先通过Py_TYPE找到对象的类型,然后通过类型对象的tp_hash函数指针来调用对应的哈希计算函数。
即:PyObject_Hash()函数根据对象的类型,调用不同的函数版本,这就是多态。
4 对象的行为
除了tp_hash字段,PyTypeObject结构体还定义了很多函数指针,这些指针最终都会指向某个函数,或者为空。我们可以把这些函数指针看作是类型对象中定义的操作,这些操作决定了对应的实例对象在运行时的行为。
虽然不同的类型对象中保存了对应实例对象共有的行为,但是不同类型的对象也会存在一些共性。例如:整数对象和浮点数对象都支持加减乘除等擦欧总,元组对象和列表对象都支持下标操作。因此,我们以行为为分类标准,对对象进行分类:
Python以此为依据,为每个类别都定义了一个标准操作集:
- PyNumberMethods结构体定义了数值型操作
- PySequenceMethods结构体定义了序列型操作
- PyMappingMethods结构体定义了关联型操作
如果类型对象提供了相关的操作集,则对应的实例对象就具备对应的行为:
typedef struct _typeobject {PyObject_VAR_HEAD
const char *tp_name; /* For printing, in format "<module>.<name>" */
Py_ssize_t tp_basicsize, tp_itemsize; /* For allocation */
// ...
PyNumberMethods *tp_as_number;
PySequenceMethods *tp_as_sequence;
PyMappingMethods *tp_as_mapping;
// ...
} PyTypeObject;
以float为例,类型对象PyFloat_Type的这三个字段是这样初始化的:
PyTypeObject PyFloat_Type = {PyVarObject_HEAD_INIT(&PyType_Type, 0)
"float",
sizeof(PyFloatObject),
// ...
&float_as_number, /* tp_as_number */
0, /* tp_as_sequence */
0, /* tp_as_mapping */
// ...
};
可以看到,只有tp_as_number非空,即float对象支持数值型操作,不支持序列型操作和关联型操作。
5 引用计数
在Python中,很多场景都涉及引用计数的调整:
- 变量赋值
- 函数参数传递
- 属性操作
- 容器操作
引用计数是Python生命周期中很关键的一个知识点,后续我会用一个单独的章节来介绍,这里咱们先按下不表,更多关于Python对象生命周期的资料请关注盛行IT软件开发工作室其它相关文章!
郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。