使用matplotlib生成折线图,matplotlib.pyplot画折线图_1

  使用matplotlib生成折线图,matplotlib.pyplot画折线图

  这篇文章主要和大家分享一个非常有趣的大蟒教程—如何美化一个绘制精美的图表折线图。文中的示例代码讲解详细,感兴趣的可以了解一下

  

目录
1.导入包2.获得数据3.对数据做一些预处理4.画图4.1 优化:添加点4.2 优化:设置刻度4.3 优化:设置填充4.4 优化:设置填充颜色5.把功能打包成函数6.测试函数最后大家好,今天分享一个非常有趣的大蟒教程,如何美化一个绘制精美的图表折线图,喜欢记得收藏、关注、点赞。

  

1. 导入包

  进口熊猫作为螺纹中径

  将matplotlib.pyplot作为血小板计数导入

  将matplotlib.ticker作为心脏导入

  将matplotlib.gridspec作为gridspec导入

  

2. 获得数据

  file _ id= 1yM _ f93 ny 4 qkxjlkl 3 gzdccqenbia 2 ltb

  url=fhttps://drive.google.com/uc?id={文件id}

  df=pd.read_csv(网址,索引列=0)

  df

  数据长得是这样的:

  

3. 对数据做一些预处理

  按照需要,对数据再做一些预处理,代码及效果如下:

  home_df=df.copy()

  home _ df=home _ df。melt(id _ vars=[ date , home_team_name , away_team_name])

  home_df[venue]=H

  home _ df。重命名(columns={ home _ team _ name : team , away _ team _ name : opposite },inplace=True)

  home _ df。替换({ variable : { home _ team _ xG : xG _ for , away_team_xG:xG_ag}},inplace=True)

  away_df=df.copy()

  远离_ df=远离_ df。melt(id _ vars=[ date , away_team_name , home_team_name])

  away_df[venue]=A

  away _ df。rename(columns={ away _ team _ name : team , home _ team _ name : opposite },inplace=True)

  away _ df。替换({ variable : { away _ team _ xG : xG _ for , home_team_xG:xG_ag}},inplace=True)

  df=pd.concat([home_df,away_df]).reset_index(drop=True)

  df

  

4. 画图

  # -过滤数据

  y _ for=df[(df[ team ]= Lazio )(df[ variable ]= xG _ for )][ value ].reset_index(drop=True)

  y _ ag=df[(df[ team ]= Lazio )(df[ variable ]= xG _ ag )][ value ].reset_index(drop=True)

  X_ = pd.Series(range(len(Y_for)))

  # ---- Compute rolling average

  Y_for = Y_for.rolling(window = 5, min_periods = 0).mean() # min_periods is for partial avg.

  Y_ag = Y_ag.rolling(window = 5, min_periods = 0).mean()

  

  

fig, ax = plt.subplots(figsize = (7,3), dpi = 200)

  ax.plot(X_, Y_for)

  ax.plot(X_, Y_ag)

  

  

  使用matplotlib倒是可以快速把图画好了,但是太丑了。接下来进行优化。

  

  

4.1 优化:添加点

  这里为每一个数据添加点

  

fig, ax = plt.subplots(figsize = (7,3), dpi = 200)

  # --- Remove spines and add gridlines

  ax.spines["left"].set_visible(False)

  ax.spines["top"].set_visible(False)

  ax.spines["right"].set_visible(False)

  ax.grid(ls = "--", lw = 0.5, color = "#4E616C")

  # --- The data

  ax.plot(X_, Y_for, marker = "o")

  ax.plot(X_, Y_ag, marker = "o")

  

  

  

  

4.2 优化:设置刻度

  

fig, ax = plt.subplots(figsize = (7,3), dpi = 200)

  # --- Remove spines and add gridlines

  ax.spines["left"].set_visible(False)

  ax.spines["top"].set_visible(False)

  ax.spines["right"].set_visible(False)

  ax.grid(ls = "--", lw = 0.25, color = "#4E616C")

  # --- The data

  ax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 5)

  ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 5)

  # --- Adjust tickers and spine to match the style of our grid

  ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays

  xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])

  # This last line outputs

  # [-1, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35]

  # and we mark the tickers every two positions.

  ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)

  ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)

  ax.spines["bottom"].set_edgecolor("#4E616C")

  

  

  

  

4.3 优化:设置填充

  

fig, ax = plt.subplots(figsize = (7,3), dpi = 200)

  # --- Remove spines and add gridlines

  ax.spines["left"].set_visible(False)

  ax.spines["top"].set_visible(False)

  ax.spines["right"].set_visible(False)

  ax.grid(ls = "--", lw = 0.25, color = "#4E616C")

  # --- The data

  ax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 5)

  ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 5)

  # --- Fill between

  ax.fill_between(x = X_, y1 = Y_for, y2 = Y_ag, alpha = 0.5)

  # --- Adjust tickers and spine to match the style of our grid

  ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays

  xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])

  ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)

  ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)

  ax.spines["bottom"].set_edgecolor("#4E616C")

  

  

  

  

4.4 优化:设置填充颜色

  1.当橙色线更高时,希望填充为橙色。但是上面的还无法满足,这里再优化一下.

  

fig, ax = plt.subplots(figsize = (7,3), dpi = 200)

  # --- Remove spines and add gridlines

  ax.spines["left"].set_visible(False)

  ax.spines["top"].set_visible(False)

  ax.spines["right"].set_visible(False)

  ax.grid(ls = "--", lw = 0.25, color = "#4E616C")

  # --- The data

  ax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 5)

  ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 5)

  # --- Fill between

  # Identify points where Y_for > Y_ag

  pos_for = (Y_for > Y_ag)

  ax.fill_between(x = X_[pos_for], y1 = Y_for[pos_for], y2 = Y_ag[pos_for], alpha = 0.5)

  pos_ag = (Y_for <= Y_ag)

  ax.fill_between(x = X_[pos_ag], y1 = Y_for[pos_ag], y2 = Y_ag[pos_ag], alpha = 0.5)

  # --- Adjust tickers and spine to match the style of our grid

  ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays

  xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])

  ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)

  ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)

  ax.spines["bottom"].set_edgecolor("#4E616C")

  

  

  上面的图出现异常,再修改一下:

  

X_aux = X_.copy()

  X_aux.index = X_aux.index * 10 # 9 aux points in between each match

  last_idx = X_aux.index[-1] + 1

  X_aux = X_aux.reindex(range(last_idx))

  X_aux = X_aux.interpolate()

  # --- Aux series for the xG created (Y_for)

  Y_for_aux = Y_for.copy()

  Y_for_aux.index = Y_for_aux.index * 10

  last_idx = Y_for_aux.index[-1] + 1

  Y_for_aux = Y_for_aux.reindex(range(last_idx))

  Y_for_aux = Y_for_aux.interpolate()

  # --- Aux series for the xG conceded (Y_ag)

  Y_ag_aux = Y_ag.copy()

  Y_ag_aux.index = Y_ag_aux.index * 10

  last_idx = Y_ag_aux.index[-1] + 1

  Y_ag_aux = Y_ag_aux.reindex(range(last_idx))

  Y_ag_aux = Y_ag_aux.interpolate()

  fig, ax = plt.subplots(figsize = (7,3), dpi = 200)

  # --- Remove spines and add gridlines

  ax.spines["left"].set_visible(False)

  ax.spines["top"].set_visible(False)

  ax.spines["right"].set_visible(False)

  ax.grid(ls = "--", lw = 0.25, color = "#4E616C")

  # --- The data

  for_ = ax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 5)

  ag_ = ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 5)

  # --- Fill between

  for index in range(len(X_aux) - 1):

   # Choose color based on which lines on top

   if Y_for_aux.iloc[index + 1] > Y_ag_aux.iloc[index + 1]:

   color = for_[0].get_color()

   else:

   color = ag_[0].get_color()

   # Fill between the current point and the next point in pur extended series.

   ax.fill_between([X_aux[index], X_aux[index+1]],

   [Y_for_aux.iloc[index], Y_for_aux.iloc[index+1]],

   [Y_ag_aux.iloc[index], Y_ag_aux.iloc[index+1]],

   color=color, zorder = 2, alpha = 0.2, ec = None)

  # --- Adjust tickers and spine to match the style of our grid

  ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays

  xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])

  ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)

  ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)

  ax.spines["bottom"].set_edgecolor("#4E616C")

  

  

  

  

5. 把功能打包成函数

  上面的样子都还不错啦,接下来把这些东西都打包成一个函数。方便后面直接出图。

  

def plot_xG_rolling(team, ax, window = 5, color_for = "blue", color_ag = "orange", data = df):

   This function creates a rolling average xG plot for a given team and rolling

   window.

   team (str): The teams name

   ax (obj): a Matplotlib axes.

   window (int): The number of periods for our rolling average.

   color_for (str): A hex color code for xG created.

   color_af (str): A hex color code for xG conceded.

   data (DataFrame): our df with the xG data.

   # -- Prepping the data

   home_df = data.copy()

   home_df = home_df.melt(id_vars = ["date", "home_team_name", "away_team_name"])

   home_df["venue"] = "H"

   home_df.rename(columns = {"home_team_name":"team", "away_team_name":"opponent"}, inplace = True)

   home_df.replace({"variable":{"home_team_xG":"xG_for", "away_team_xG":"xG_ag"}}, inplace = True)

   away_df = data.copy()

   away_df = away_df.melt(id_vars = ["date", "away_team_name", "home_team_name"])

   away_df["venue"] = "A"

   away_df.rename(columns = {"away_team_name":"team", "home_team_name":"opponent"}, inplace = True)

   away_df.replace({"variable":{"away_team_xG":"xG_for", "home_team_xG":"xG_ag"}}, inplace = True)

   df = pd.concat([home_df, away_df]).reset_index(drop = True)

   # ---- Filter the data

   Y_for = df[(df["team"] == team) & (df["variable"] == "xG_for")]["value"].reset_index(drop = True)

   Y_ag = df[(df["team"] == team) & (df["variable"] == "xG_ag")]["value"].reset_index(drop = True)

   X_ = pd.Series(range(len(Y_for)))

   if Y_for.shape[0] == 0:

   raise ValueError(f"Team {team} is not present in the DataFrame")

   # ---- Compute rolling average

   Y_for = Y_for.rolling(window = 5, min_periods = 0).mean() # min_periods is for partial avg.

   Y_ag = Y_ag.rolling(window = 5, min_periods = 0).mean()

   # ---- Create auxiliary series for filling between curves

   X_aux = X_.copy()

   X_aux.index = X_aux.index * 10 # 9 aux points in between each match

   last_idx = X_aux.index[-1] + 1

   X_aux = X_aux.reindex(range(last_idx))

   X_aux = X_aux.interpolate()

   # --- Aux series for the xG created (Y_for)

   Y_for_aux = Y_for.copy()

   Y_for_aux.index = Y_for_aux.index * 10

   last_idx = Y_for_aux.index[-1] + 1

   Y_for_aux = Y_for_aux.reindex(range(last_idx))

   Y_for_aux = Y_for_aux.interpolate()

   # --- Aux series for the xG conceded (Y_ag)

   Y_ag_aux = Y_ag.copy()

   Y_ag_aux.index = Y_ag_aux.index * 10

   last_idx = Y_ag_aux.index[-1] + 1

   Y_ag_aux = Y_ag_aux.reindex(range(last_idx))

   Y_ag_aux = Y_ag_aux.interpolate()

   # --- Plotting our data

   # --- Remove spines and add gridlines

   ax.spines["left"].set_visible(False)

   ax.spines["top"].set_visible(False)

   ax.spines["right"].set_visible(False)

   ax.grid(ls = "--", lw = 0.25, color = "#4E616C")

   # --- The data

   for_ = ax.plot(X_, Y_for, marker = "o", mfc = "white", ms = 4, color = color_for)

   ag_ = ax.plot(X_, Y_ag, marker = "o", mfc = "white", ms = 4, color = color_ag)

   # --- Fill between

   for index in range(len(X_aux) - 1):

   # Choose color based on which lines on top

   if Y_for_aux.iloc[index + 1] > Y_ag_aux.iloc[index + 1]:

   color = for_[0].get_color()

   else:

   color = ag_[0].get_color()

   # Fill between the current point and the next point in pur extended series.

   ax.fill_between([X_aux[index], X_aux[index+1]],

   [Y_for_aux.iloc[index], Y_for_aux.iloc[index+1]],

   [Y_ag_aux.iloc[index], Y_ag_aux.iloc[index+1]],

   color=color, zorder = 2, alpha = 0.2, ec = None)

   # --- Ensure minimum value of Y-axis is zero

   ax.set_ylim(0)

   # --- Adjust tickers and spine to match the style of our grid

   ax.xaxis.set_major_locator(ticker.MultipleLocator(2)) # ticker every 2 matchdays

   xticks_ = ax.xaxis.set_ticklabels([x - 1 for x in range(0, len(X_) + 3, 2)])

   ax.xaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)

   ax.yaxis.set_tick_params(length = 2, color = "#4E616C", labelcolor = "#4E616C", labelsize = 6)

   ax.spines["bottom"].set_edgecolor("#4E616C")

   # --- Legend and team name

   Y_for_last = Y_for.iloc[-1]

   Y_ag_last = Y_ag.iloc[-1]

   # -- Add the teams name

   team_ = ax.text(

   x = 0, y = ax.get_ylim()[1] + ax.get_ylim()[1]/20,

   s = f{team},

   color = "#4E616C",

   va = center,

   ha = left,

   size = 7

   )

   # -- Add the xG created label

   for_label_ = ax.text(

   x = X_.iloc[-1] + 0.75, y = Y_for_last,

   s = f{Y_for_last:,.1f} xGF,

   color = color_for,

   va = center,

   ha = left,

   size = 6.5

   )

   # -- Add the xG conceded label

   ag_label_ = ax.text(

   x = X_.iloc[-1] + 0.75, y = Y_ag_last,

   s = f{Y_ag_last:,.1f} xGA,

   color = color_ag,

   va = center,

   ha = left,

   size = 6.5

   )

  

  

6.测试函数

  

file_id = 1yM_F93NY4QkxjlKL3GzdcCQEnBiA2ltB

  url = fhttps://drive.google.com/uc?id={file_id}

  df = pd.read_csv(url, index_col=0)

  

  

fig = plt.figure(figsize=(5, 2), dpi = 200)

  ax = plt.subplot(111)

  plot_xG_rolling("Sassuolo", ax, color_for = "#00A752", color_ag = "black", data = df)

  plt.tight_layout()

  

  

  再设置更加丰富的颜色:

  

fig = plt.figure(figsize=(5, 8), dpi = 200, facecolor = "#EFE9E6")

  ax1 = plt.subplot(411, facecolor = "#EFE9E6")

  ax2 = plt.subplot(412, facecolor = "#EFE9E6")

  ax3 = plt.subplot(413, facecolor = "#EFE9E6")

  ax4 = plt.subplot(414, facecolor = "#EFE9E6")

  plot_xG_rolling("Sassuolo", ax1, color_for = "#00A752", color_ag = "black", data = df)

  plot_xG_rolling("Lazio", ax2, color_for = "#87D8F7", color_ag = "#15366F", data = df)

  plot_xG_rolling("Hellas Verona", ax3, color_for = "#153aab", color_ag = "#fdcf41", data = df)

  plot_xG_rolling("Empoli", ax4, color_for = "#00579C", color_ag = "black", data = df)

  plt.tight_layout()

  

  

  

  

最后

  其实本文主要是对两个折线图做了一系列的优化和改进而已,主要是强调细节部分。

  涉及到的matplotlib的知识,也主要是在ticks、背景颜色、fill_between部分。

  以上就是Python+matplotlib实现折线图的美化的详细内容,更多关于Python matplotlib折线图的资料请关注盛行IT软件开发工作室其它相关文章!

郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。

留言与评论(共有 条评论)
   
验证码: