python元组应用案例,python元组的基本操作
本文给大家带来一些python的知识,包括元组的创建、访问、修改、删除和内置方法。希望对你有帮助。
推荐:python教程
简介——在Python中,项目中的重要数据信息是通过数据结构保存的。Python有内置的数据结构,比如列表、元组、字典和集合。在这堂课中,我们将讨论3354元组,这是Python中一种重要的数据结构。
在Python中,我们可以将元组看作一种特殊的列表。它与列表唯一的不同在于:元组内的数据元素不能发生改变【这个不变——不但不能改变其中的数据项,而且也不能添加和删除数据项!】。当我们需要创建一组不可改变的数据时,通常是将这些数据放进元组中~
00-1010
1.元组的 创建 访问
在Python中,创建元组的基本形式是将数据元素用括号“()”括起来,每个元素之间用逗号“,”隔开。如下所示:
tuple1=(小明,小红,18,21)
元组2=(1,2,3,4,5)
#和3354可以创建空元组!
tuple3=()
#注3354如果你创建的元组只包含一个元素,别忘了在元素后面加一个逗号。让它被认为是一个元组:
Tuple4=(22,)
(1)元组的创建:
元组类似于字符串和列表。索引从0开始,可以被截取和组合。如下所示:
tuple1=(小明,小红,18,21)
元组2=(1,2,3,4,5)
#显示元组中索引为1的元素的值
打印( tuple1[1]: ,tuple1[0])
#显示元组中索引从1到3的元素的值
打印(第二组[1:3]: ,第二组[1:3])
00-1010
(2)访问:
尽管元组在开始时是不可变的,但它仍然具有支持的操作3354个元组来连接和组合:tuple1=(小明,小红,18,21)
元组2=(1,2,3,4,5)
元组_新=元组1元组2
打印(元组_新)
00-1010虽然元组是不可变的,但是del语句可以删除整个元组。
如下所示:
tuple1=(小明,小红,18,21)
Print(tuple1)#正常打印tuple1
德尔图普勒1
Print(tuple1)#因为tuple1是从中删除的,所以再打印的时候会报错!
00-1010元组是不可变的,但是我们可以通过使用内置方法来操作元组。常见的内置方法如下:
Len(tuple):统计元组元素的个数;Max(tuple):返回元组中元素的最大值;Min(tuple):返回元组中元素的最小值;Tuple(seq):将列表转换成元组。其实更多时候,我们是将元组先转换为列表,操作之后再转换为元组(因为列表具有很多方法~)。
00-1010
2.元组的 修改 删除
Python允许将包含n个元素的元组或序列分成n个独立的变量。这是因为Python语法允许通过简单的赋值操作将任何序列/可迭代对象分解成单独的变量。唯一的要求是变量的总数和结构要和序列匹配。如下所示:
元组1=(18,22)
x,y=tuple1
打印(x)
打印(y)
tuple2=[小明,33,19.8,(2012,1,11)]
姓名、年龄、级别、日期=tuple2
打印(姓名)
打印(日期)
/pre>
如果要分解未知或任意长度的可迭代对象,上述分解操作岂不直接很nice!通常在这类可迭代对象中会有一些已知的组件或模式(例如:元素1之后的所有内容都是电话号码),利用“*”星号表达式分解可迭代对象后,使得开发者能轻松利用这些模式,而无须在可迭代对象中做复杂操作就能得到相关的元素。在Python中,星号表达式在迭代一个变长的元组序列时十分有用。如下演示分解一个待标记元组序列的过程。
records = [('AAA', 1, 2),
('BBB', 'hello'),
('CCC', 5, 3)
]
def do_foo(x, y):
print('AAA', x, y)
def do_bar(s):
print('BBB', s)
for tag, *args in records:
if tag == 'AAA':
do_foo(*args)
elif tag == 'BBB':
do_bar(*args)
line = 'guan:ijing234://wef:678d:guan'
uname, *fields, homedir, sh = line.split(':')
print(uname)
print(*fields)
print(homedir)
print(sh)
(2)
在Python中迭代处理列表或元组等序列时,有时需要统计最后几项记录以实现历史记录统计功能。使用内置的deque实现:
from _collections import dequeq = deque(maxlen=3)
q.append(1)
q.append(2)
q.append(3)
print(q)
q.append(4)
print(q)
如下——演示了将序列中的最后几项作为历史记录的过程。
from _collections import deque123.txt:def search(lines, pattern, history=5):
previous_lines = deque(maxlen=history)
for line in lines:
if pattern in line:
yield line, previous_lines
previous_lines.append(line)
# Example use on a file
if __name__ == '__main__':
with open('123.txt') as f:
for line, prevlines in search(f, 'python', 5):
for pline in prevlines: # 包含python的行
print(pline) # print (pline, end='')
# 打印最后检查过的N行文本
print(line) # print (pline, end='')
pythonpythonpythonpythonpythonpythonpythonpython
python
在上述代码中,对一系列文本行实现了简单的文本匹配操作,当发现有合适的匹配时,就输出当前的匹配行以及最后检查过的N行文本。使用deque(maxlen=N)创建了一个固定长度的队列。当有新记录加入而使得队列变成已满状态时,会自动移除最老的那条记录。当编写搜索某项记录的代码时,通常会用到含有yield关键字的生成器函数,它能够将处理搜索过程的代码和使用搜索结果的代码成功解耦开来。
5.实现优先级队列
使用内置模块heapq可以实现一个简单的优先级队列。
如下——演示了实现一个简单的优先级队列的过程。
import heapq在上述代码中,利用heapq模块实现了一个简单的优先级队列,第一次执行pop()操作时返回的元素具有最高的优先级。class PriorityQueue:
def __init__(self):
self._queue = []
self._index = 0
def push(self, item, priority):
heapq.heappush(self._queue, (-priority, self._index, item))
self._index += 1
def pop(self):
return heapq.heappop(self._queue)[-1]
class Item:
def __init__(self, name):
self.name = name
def __repr__(self):
return 'Item({!r})'.format(self.name)
q = PriorityQueue()
q.push(Item('AAA'), 1)
q.push(Item('BBB'), 4)
q.push(Item('CCC'), 5)
q.push(Item('DDD'), 1)
print(q.pop())
print(q.pop())
print(q.pop())
拥有相同优先级的两个元素(foo和grok)返回的顺序,同插入到队列时的顺序相同。
函数heapq.heappush()和heapq.heappop()分别实现了列表_queue中元素的插入和移除操作,并且保证列表中的第一个元素的优先级最低。
函数heappop()总是返回“最小”的元素,并且因为push和pop操作的复杂度都是O(log2N),其中N代表堆中元素的数量,因此就算N的值很大,这些操作的效率也非常高。
上述代码中的队列以元组 (-priority, index, item)的形式组成,priority取负值是为了让队列能够按元素的优先级从高到底排列。这和正常的堆排列顺序相反,一般情况下,堆是按从小到大的顺序进行排序的。变量index的作用是将具有相同优先级的元素以适当的顺序排列,通过维护一个不断递增的索引,元素将以它们加入队列时的顺序排列。但是当index在对具有相同优先级的元素间进行比较操作,同样扮演一个重要的角色。
在Python中,如果以元组(priority, item)的形式存储元素,只要它们的优先级不同,它们就可以进行比较。但是如果两个元组的优先级相同,在进行比较操作时会失败。这时可以考虑引入一个额外的索引值,以(priority, index, item)的方式建立元组,因为没有哪两个元组会有相同的index值,所以这样就可以完全避免上述问题。一旦比较操作的结果可以确定,Python就不会再去比较剩下的元组元素了。
如下——演示了实现一个简单的优先级队列的过程:
import heapqclass PriorityQueue:
def __init__(self):
self._queue = []
self._index = 0
def push(self, item, priority):
heapq.heappush(self._queue, (-priority, self._index, item))
self._index += 1
def pop(self):
return heapq.heappop(self._queue)[-1]
class Item:
def __init__(self, name):
self.name = name
def __repr__(self):
return 'Item({!r})'.format(self.name)
# ①
a = Item('AAA')
b = Item('BBB')
#a < b 错误
a = (1, Item('AAA'))
b = (5, Item('BBB'))
print(a < b)
c = (1, Item('CCC'))
#② a < c 错误
# ③
a = (1, 0, Item('AAA'))
b = (5, 1, Item('BBB'))
c = (1, 2, Item('CCC'))
print(a < b)
# ④
print(a < c)
在上述代码中,因为在1-2中没有添加所以,所以当两个元组的优先级相同时会出错;而在3-4中添加了索引,这样就不会出错了!
推荐学习:python学习教程以上就是实例详解Python元组的详细内容,更多请关注盛行IT软件开发工作室其它相关文章!
郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。