python 魔方,画一个立方体

  python 魔方,画一个立方体

  这篇文章主要介绍了大蟒画立方体-魔方,下文分享详细的代码说明,具有一定的参考价值,需要的小伙伴可以参考一下

  直接进入主题

  立方体每列颜色不同:

  #导入库

  将matplotlib.pyplot作为血小板计数导入

  从mpl_toolkits.mplot3d导入Axes3D

  将数组作为铭牌导入

  #创建轴

  坐标轴=[5,5,5]

  #创建数据

  data=np.ones(axes,dtype=np.bool)

  #控制透明度

  阿尔法=0.9

  #控制颜色

  colors=np.empty(axes [4],dtype=np.float32)

  颜色[0]=[1,0,0,alpha] #红色

  colors[1]=[0,1,0,alpha] #绿色

  颜色[2]=[0,0,1,alpha] #蓝色

  颜色[3]=[1,1,0,alpha] #黄色

  颜色[4]=[1,1,1,alpha] #灰色

  #绘图图

  图=plt .图()

  ax=fig.add_subplot(111,projection=3d )

  #体素用于定制

  #尺寸、位置和颜色。

  ax.voxels(data,facecolors=colors,edgecolors=grey )

  立方体各面颜色不同:

  将matplotlib.pyplot作为血小板计数导入

  将数组作为铭牌导入

  def生成_魔方(美国纽约,新西兰):

  根据输入生成指定尺寸的魔方

  :param nx:

  :param ny:

  :参数nz:

  :返回:

  # 准备一些坐标

  n_voxels=np.ones((nx 2,ny 2,nz 2),dtype=bool)

  # 生成间隙

  大小=NP。数组(n _体素。形状)* 2

  filled_2=np.zeros(size - 1,dtype=n_voxels.dtype)

  filled_2[:2,2,2]=n _体素

  # 缩小间隙

  # 构建体素顶点控制网格

  # x,y,z均为6x6x8的矩阵,为体素的网格,3x3x4个小方块,共有6x6x8个顶点。

  # 这里//2是精髓,把索引范围从[0 1 2 3 4 5]转换为[0 0 1 1 2 2],这样就可以单独设立每个方块的顶点范围

  x,y,z=NP。索引(NP。数组(filled _ 2。形状)1).astype(float) //2 # 3x6x6x8,其中x,y,z均为6x6x8

  x[1:2,]=0.95

  y[:1:2,]=0.95

  z[:1:2]=0.95

  # 修改最外面的面

  x[0,]=0.94

  y[:0,]=0.94

  z[:0]=0.94

  x[-1,] -=0.94

  y[:-1,] -=0.94

  z[:-1] -=0.94

  # 去除边角料

  filled_2[0,0,]=0

  filled_2[0,-1,]=0

  filled_2[-1,0,]=0

  filled_2[-1,-1,]=0

  filled_2[:0,0]=0

  filled_2[:0,-1]=0

  filled_2[:-1,0]=0

  filled_2[:-1,-1]=0

  filled_2[0,0]=0

  filled_2[0,-1]=0

  filled_2[-1,0]=0

  filled_2[-1,-1]=

  0

      # 给魔方六个面赋予不同的颜色

      colors = np.array([#ffd400, "#fffffb", "#f47920", "#d71345", "#145b7d", "#45b97c"])

      facecolors = np.full(filled_2.shape, #77787b)  # 设一个灰色的基调

      # facecolors = np.zeros(filled_2.shape, dtype=U7)

      facecolors[:, :, -1] = colors[0]    # 上黄

      facecolors[:, :, 0] = colors[1]     # 下白

      facecolors[:, 0, :] = colors[2]     # 左橙

      facecolors[:, -1, :] = colors[3]    # 右红

      facecolors[0, :, :] = colors[4]     # 前蓝

      facecolors[-1, :, :] = colors[5]    # 后绿

      ax = plt.figure().add_subplot(projection=3d)

      ax.voxels(x, y, z, filled_2, facecolors=facecolors)

      plt.show()

  if __name__ == __main__:

      generate_rubik_cube(4, 4, 4)

  

  

  彩色透视立方体:

  

from __future__ import division

  import numpy as np

  from mpl_toolkits.mplot3d import Axes3D

  from mpl_toolkits.mplot3d.art3d import Poly3DCollection

  from matplotlib.pyplot import figure, show

  def quad(plane=xy, origin=None, width=1, height=1, depth=0):

   u, v = (0, 0) if origin is None else origin

   plane = plane.lower()

   if plane == xy:

   vertices = ((u, v, depth),

   (u + width, v, depth),

   (u + width, v + height, depth),

   (u, v + height, depth))

   elif plane == xz:

   vertices = ((u, depth, v),

   (u + width, depth, v),

   (u + width, depth, v + height),

   (u, depth, v + height))

   elif plane == yz:

   vertices = ((depth, u, v),

   (depth, u + width, v),

   (depth, u + width, v + height),

   (depth, u, v + height))

   else:

   raise ValueError("{0}" is not a supported plane!.format(plane))

   return np.array(vertices)

  def grid(plane=xy,

   origin=None,

   width=1,

   height=1,

   depth=0,

   width_segments=1,

   height_segments=1):

   u, v = (0, 0) if origin is None else origin

   w_x, h_y = width / width_segments, height / height_segments

   quads = []

   for i in range(width_segments):

   for j in range(height_segments):

   quads.append(

   quad(plane, (i * w_x + u, j * h_y + v), w_x, h_y, depth))

   return np.array(quads)

  def cube(plane=None,

   origin=None,

   width=1,

   height=1,

   depth=1,

   width_segments=1,

   height_segments=1,

   depth_segments=1):

   plane = ((+x, -x, +y, -y, +z, -z)

   if plane is None else

   [p.lower() for p in plane])

   u, v, w = (0, 0, 0) if origin is None else origin

   w_s, h_s, d_s = width_segments, height_segments, depth_segments

   grids = []

   if -z in plane:

   grids.extend(grid(xy, (u, w), width, depth, v, w_s, d_s))

   if +z in plane:

   grids.extend(grid(xy, (u, w), width, depth, v + height, w_s, d_s))

   if -y in plane:

   grids.extend(grid(xz, (u, v), width, height, w, w_s, h_s))

   if +y in plane:

   grids.extend(grid(xz, (u, v), width, height, w + depth, w_s, h_s))

   if -x in plane:

   grids.extend(grid(yz, (w, v), depth, height, u, d_s, h_s))

   if +x in plane:

   grids.extend(grid(yz, (w, v), depth, height, u + width, d_s, h_s))

   return np.array(grids)

  canvas = figure()

  axes = Axes3D(canvas)

  quads = cube(width_segments=4, height_segments=4, depth_segments=4)

  # You can replace the following line by whatever suits you. Here, we compute

  # each quad colour by averaging its vertices positions.

  RGB = np.average(quads, axis=-2)

  # Setting +xz and -xz plane faces to black.

  RGB[RGB[..., 1] == 0] = 0

  RGB[RGB[..., 1] == 1] = 0

  # Adding an alpha value to the colour array.

  RGBA = np.hstack((RGB, np.full((RGB.shape[0], 1), .85)))

  collection = Poly3DCollection(quads)

  collection.set_color(RGBA)

  axes.add_collection3d(collection)

  show()

  

  

  到此这篇关于python画立方体--魔方的文章就介绍到这了,更多相关python画魔方内容请搜索盛行IT软件开发工作室以前的文章或继续浏览下面的相关文章希望大家以后多多支持盛行IT软件开发工作室!

郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。

留言与评论(共有 条评论)
   
验证码: