Python实现线性回归,python编写线性回归函数
线性回归就是通过多次取点,找出符合函数的曲线,那么就可以完成一维线性回归,本文通过实例代码给大家介绍大蟒实现线性回归的相关知识,感兴趣的朋友一起看看吧
目录
1线性回归1.1简单线性回归1.2多元线性回归1.3使用实例中的线性回归模型
1线性回归
1.1简单线性回归
在简单线性回归中,通过调整a和b的参数值,来拟合从x到y的线性关系。下图为进行拟合所需要优化的目标,也即是MES(均方误差),只不过省略了平均的部分(除以m)。
对于简单线性回归,只有两个参数a和b,通过对均方误差(均方误差)优化目标求极值(最小二乘法),即可求得最优a和b如下,所以在训练简单线性回归模型时,也只需要根据数据求解这两个参数值即可。
下面使用波士顿房价数据集中,索引为5的特征每所住宅的平均房间数来进行简单线性回归。其中使用的评价指标为:
# 以实例的形式对简单线性回归算法进行封装
将数组作为铭牌导入
将sklearn.datasets作为数据集导入
从sklearn.model_selection导入训练_测试_拆分
将matplotlib.pyplot作为血小板计数导入
从sklearn.metrics导入均方误差,平均绝对误差
随机种子(123)
类SimpleLinearRegression():
def __init__(self):
初始化模型参数
self.a _=无
self.b _=无
定义拟合(自身,x系列,y系列):
训练模型参数
因素
-
x_train:train x,shape:data [N,]
y_train:train y,shape:data [N,]
assert (x_train.ndim==1且y_train.ndim==1),\
简单线性回归模型只能解决单一特征训练数据
断言len(x火车)==len(y火车),\
x列车的大小必须等于 y_train
x _均值=np。均值(x_train)
y_mean=np.mean(y_train)
自我。a _=NP。vdot((x_train-x_mean),(y _ train-y _ mean))/NP。vdot((x _ train-x _ mean),(x _ train-x _ mean))
self.b _=y _均值自我。a _ * x _均值
定义预测(自我,输入_x):
基于一批数据进行预测
input_x:shape-[N,]
断言input_x.ndim==1,\
简单线性回归
n model can only solve single feature data"""
return np.array([self.pred_(x) for x in input_x])
def pred_(self,x):
give a prediction based on single input x
return self.a_*x+self.b_
def __repr__(self):
return "SimpleLinearRegressionModel"
if __name__ == __main__:
boston_data = datasets.load_boston()
x = boston_data[data][:, 5] # total x data (506,)
y = boston_data[target] # total y data (506,)
# keep data with target value less than 50.
x = x[y < 50] # total x data (490,)
y = y[y < 50] # total x data (490,)
plt.scatter(x, y)
plt.show()
# train size:(343,) test size:(147,)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
regs = SimpleLinearRegression()
regs.fit(x_train, y_train)
y_hat = regs.predict(x_test)
rmse = np.sqrt(np.sum((y_hat - y_test) ** 2) / len(x_test))
mse = mean_squared_error(y_test, y_hat)
mae = mean_absolute_error(y_test, y_hat)
# notice
R_squared_Error = 1 - mse / np.var(y_test)
print(mean squared error:%.2f % (mse))
print(root mean squared error:%.2f % (rmse))
print(mean absolute error:%.2f % (mae))
print(R squared Error:%.2f % (R_squared_Error))
输出结果:
mean squared error:26.74
root mean squared error:5.17
mean absolute error:3.85
R squared Error:0.50
数据的可视化:
1.2 多元线性回归
多元线性回归中,单个x的样本拥有了多个特征,也就是上图中带下标的x。
其结构可以用向量乘法表示出来:
为了便于计算,一般会将x增加一个为1的特征,方便与截距bias计算。
而多元线性回归的优化目标与简单线性回归一致。
通过矩阵求导计算,可以得到方程解,但求解的时间复杂度很高。
下面使用正规方程解的形式,来对波士顿房价的所有特征做多元线性回归。
import numpy as npfrom PlayML.metrics import r2_score
from sklearn.model_selection import train_test_split
import sklearn.datasets as datasets
from PlayML.metrics import root_mean_squared_error
np.random.seed(123)
class LinearRegression():
def __init__(self):
self.coef_=None # coeffient
self.intercept_=None # interception
self.theta_=None
def fit_normal(self, x_train, y_train):
"""
use normal equation solution for multiple linear regresion as model parameters
Parameters
----------
theta=(X^T * X)^-1 * X^T * y
assert x_train.shape[0] == y_train.shape[0],\
"""size of the x_train must be equal to y_train """
X_b=np.hstack([np.ones((len(x_train), 1)), x_train])
self.theta_=np.linalg.inv(X_b.T.dot(X_b)).dot(X_b.T).dot(y_train) # (featere,1)
self.coef_=self.theta_[1:]
self.intercept_=self.theta_[0]
def predict(self,x_pred):
"""给定待预测数据集X_predict,返回表示X_predict的结果向量"""
assert self.intercept_ is not None and self.coef_ is not None, \
"must fit before predict!"
assert x_pred.shape[1] == len(self.coef_), \
"the feature number of X_predict must be equal to X_train"
X_b=np.hstack([np.ones((len(x_pred),1)),x_pred])
return X_b.dot(self.theta_)
def score(self,x_test,y_test):
Calculate evaluating indicator socre
---------
x_test:x test data
y_test:true label y for x test data
y_pred=self.predict(x_test)
return r2_score(y_test,y_pred)
def __repr__(self):
return "LinearRegression"
if __name__ == __main__:
# use boston house price dataset for test
boston_data = datasets.load_boston()
x = boston_data[data] # total x data (506,)
y = boston_data[target] # total y data (506,)
# keep data with target value less than 50.
x = x[y < 50] # total x data (490,)
y = y[y < 50] # total x data (490,)
# train size:(343,) test size:(147,)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3,random_state=123)
regs = LinearRegression()
regs.fit_normal(x_train, y_train)
# calc error
score=regs.score(x_test,y_test)
rmse=root_mean_squared_error(y_test,regs.predict(x_test))
print(R squared error:%.2f % (score))
print(Root mean squared error:%.2f % (rmse))
输出结果:
R squared error:0.79
Root mean squared error:3.36
1.3 使用sklearn中的线性回归模型
import sklearn.datasets as datasetsfrom sklearn.linear_model import LinearRegression
import numpy as np
from sklearn.model_selection import train_test_split
from PlayML.metrics import root_mean_squared_error
np.random.seed(123)
if __name__ == __main__:
# use boston house price dataset
boston_data = datasets.load_boston()
x = boston_data[data] # total x size (506,)
y = boston_data[target] # total y size (506,)
# keep data with target value less than 50.
x = x[y < 50] # total x size (490,)
y = y[y < 50] # total x size (490,)
# train size:(343,) test size:(147,)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=123)
regs = LinearRegression()
regs.fit(x_train, y_train)
# calc error
score = regs.score(x_test, y_test)
rmse = root_mean_squared_error(y_test, regs.predict(x_test))
print(R squared error:%.2f % (score))
print(Root mean squared error:%.2f % (rmse))
print(coeffient:,regs.coef_.shape)
print(interception:,regs.intercept_.shape)
R squared error:0.79Root mean squared error:3.36
coeffient: (13,)
interception: ()
到此这篇关于python实现线性回归的文章就介绍到这了,更多相关python线性回归内容请搜索盛行IT软件开发工作室以前的文章或继续浏览下面的相关文章希望大家以后多多支持盛行IT软件开发工作室!
郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。