菜鸟教程 python 正则表达式,python正则表达式知识点总结
本文主要介绍Python正则表达式的总结和分享,包括正则表达式的基础和Python正则表达式标准库的完整介绍和使用实例。有需要的朋友可以参考一下。
00-1010 1.正则表达式1.1的基础。简介1.2。量词的贪婪模式和非贪婪模式1.3。反斜杠1.4的麻烦。匹配模式2。关于模块2.1。开始使用RE 2.2 . match 2.3 . pattern注意:.本文基于Python2.4如果看到不懂的词,请记得百度谷歌或者维基,随便。
目录
1. 正则表达式基础
正则表达式不是Python的一部分。正则表达式是处理字符串的强大工具。它有自己独特的语法和独立的处理引擎。可能没有str自己的方法效率高,但是很强大。由于这一点,正则表达式的语法在提供正则表达式的语言中是相同的。唯一的区别是不同编程语言支持的语法数量不同。但是不用担心,不支持的语法通常是不常见的部分。如果您已经在其他语言中使用过正则表达式,那么只需查看一下就可以开始了。
下图展示了使用正则表达式进行匹配的流程:
正则表达式的近似匹配过程是:依次将表达式与文本中的字符进行比较,如果每个字符都能匹配,则匹配成功;一旦有不成功的字符,匹配失败。如果表达式中有量词或者边界,这个过程会略有不同,但也很好理解。看下图的例子,自己用几次就明白了。
下图列出了Python支持的正则表达式元字符和语法:
1.1. 简单介绍
正则表达式通常用于在文本中查找匹配的字符串。Python量词默认是贪婪的(在少数语言中,也可能默认是非贪婪的),总是试图匹配尽可能多的字符;相反,不贪心的人总是尽量少匹配字符。例如,如果正则表达式 ab* 用于查找 abbbc ,它将查找 abbb 。如果你使用非贪婪的量词“ab*?”, a 会被找到。
1.2. 数量词的贪婪模式与非贪婪模式
像大多数编程语言一样,\ 在正则表达式中被用作转义字符,这可能会导致反斜杠。如果需要匹配文本中的字符 \ ,那么在用编程语言表示的正则表达式中就需要四个反斜杠 \ \ \ :前两个和后两个在编程语言中用来转义成反斜杠,然后在正则表达式中转义成反斜杠之前转换成两个反斜杠。Python中的原生字符串很好地解决了这个问题,本例中的正则表达式可以用r\\ 来表示。类似地,匹配一个数字的 \\d 可以写成r\d 。有了原生字符串,再也不用担心漏掉反斜杠,写出来的表达式也更直观。
1.3. 反斜杠的困扰
正则表达式提供了一些可用的匹配模式,如忽略大小写、多行匹配等。它们将在pattern类的工厂方法re.compile(pattern[,flags])中一起引入。
1.4. 匹配模式
2. re模块
Python re模块提供了对正则表达式的支持。使用re的一般步骤是首先将正则表达式的字符串形式编译成Pattern实例,然后使用Pattern实例处理文本并获得匹配结果(一个match实例),最后使用Match实例获取信息并进行其他操作。
#编码: UTF-8
进口re
#将正则表达式编译成模式对象
pattern=re.compile(rhello )
#使用模式匹配文本,并获得匹配结果。如果无法匹配,则不返回任何内容。
匹配=模式。
match(hello world!)
if match:
# 使用Match获得分组信息
print match.group()
### 输出 ###
# hello
re.compile(strPattern[, flag]):
这个方法是Pattern
类的工厂方法,用于将字符串形式的正则表达式编译为Pattern对象。 第二个参数flag是匹配模式,取值可以使用按位或运算符''表示同时生效,比如re.I re.M。另外,你也可以在regex字符串中指定模式,比如re.compile('pattern', re.I re.M)与re.compile('(?im)pattern')是等价的。
可选值有:
- re.I(re.IGNORECASE): 忽略大小写(括号内是完整写法,下同)
- M(MULTILINE): 多行模式,改变'^'和'$'的行为(参见上图)
- S(DOTALL): 点任意匹配模式,改变'.'的行为
- L(LOCALE): 使预定字符类 \w \W \b \B \s \S 取决于当前区域设定
- U(UNICODE): 使预定字符类 \w \W \b \B \s \S \d \D 取决于unicode定义的字符属性
- X(VERBOSE): 详细模式。这个模式下正则表达式可以是多行,忽略空白字符,并可以加入注释。
以下两个正则表达式是等价的:
a = re.compile(r"""\d + # the integral part\. # the decimal point
\d * # some fractional digits""", re.X)
b = re.compile(r"\d+\.\d*")
re提供了众多模块方法用于完成正则表达式的功能。这些方法可以使用Pattern实例的相应方法替代,唯一的好处是少写一行re.compile()
代码,但同时也无法复用编译后的Pattern对象。这些方法将在Pattern类的实例方法部分一起介绍。
如上面这个例子可以简写为:
m = re.match(rhello, hello world!)print m.group()
re模块还提供了一个方法escape(string),用于将string中的正则表达式元字符如*/+/?等之前加上转义符再返回,在需要大量匹配元字符时有那么一点用。
2.2. Match
Match对象是一次匹配的结果,包含了很多关于此次匹配的信息,可以使用Match提供的可读属性或方法来获取这些信息。
属性:
- string: 匹配时使用的文本。
- re: 匹配时使用的Pattern对象。
- pos: 文本中正则表达式开始搜索的索引。值与
Pattern.match()
和Pattern.seach()
方法的同名参数相同。 - endpos: 文本中正则表达式结束搜索的索引。值与Pattern.match()和Pattern.seach()方法的同名参数相同。
- lastindex: 最后一个被捕获的分组在文本中的索引。如果没有被捕获的分组,将为None。
- lastgroup: 最后一个被捕获的分组的别名。如果这个分组没有别名或者没有被捕获的分组,将为None。
方法:
group([group1, …]):
获得一个或多个分组截获的字符串;指定多个参数时将以元组形式返回。group1可以使用编号也可以使用别名;编号0代表整个匹配的子串;不填写参数时,返回group(0);没有截获字符串的组返回None;截获了多次的组返回最后一次截获的子串。
groups([default]):
以元组形式返回全部分组截获的字符串。相当于调用group(1,2,…last)。default表示没有截获字符串的组以这个值替代,默认为None。
groupdict([default]):
返回以有别名的组的别名为键、以该组截获的子串为值的字典,没有别名的组不包含在内。default含义同上。
start([group]):
返回指定的组截获的子串在string中的起始索引(子串第一个字符的索引)。group默认值为0。
end([group]):
返回指定的组截获的子串在string中的结束索引(子串最后一个字符的索引+1)。group默认值为0。
span([group]):
返回(start(group), end(group))。
expand(template):
将匹配到的分组代入template中然后返回。template中可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。\id与\g<id>是等价的;但\10将被认为是第10个分组,如果你想表达\1之后是字符'0',只能使用\g<1>0。
import rem = re.match(r(\w+) (\w+)(?P<sign>.*), hello world!)
print "m.string:", m.string
print "m.re:", m.re
print "m.pos:", m.pos
print "m.endpos:", m.endpos
print "m.lastindex:", m.lastindex
print "m.lastgroup:", m.lastgroup
print "m.group(1,2):", m.group(1, 2)
print "m.groups():", m.groups()
print "m.groupdict():", m.groupdict()
print "m.start(2):", m.start(2)
print "m.end(2):", m.end(2)
print "m.span(2):", m.span(2)
print r"m.expand(r\2 \1\3):", m.expand(r\2 \1\3)
### output ###
# m.string: hello world!
# m.re: <_sre.SRE_Pattern object at 0x016E1A38>
# m.pos: 0
# m.endpos: 12
# m.lastindex: 3
# m.lastgroup: sign
# m.group(1,2): (hello, world)
# m.groups(): (hello, world, !)
# m.groupdict(): {sign: !}
# m.start(2): 6
# m.end(2): 11
# m.span(2): (6, 11)
# m.expand(r\2 \1\3): world hello!
2.3. Pattern
Pattern
对象是一个编译好的正则表达式,通过Pattern提供的一系列方法可以对文本进行匹配查找。
Pattern
不能直接实例化,必须使用re.compile()进行构造。
Pattern提供了几个可读属性用于获取表达式的相关信息:
- pattern: 编译时用的表达式字符串。
- flags: 编译时用的匹配模式。数字形式。
- groups: 表达式中分组的数量。
- groupindex: 以表达式中有别名的组的别名为键、以该组对应的编号为值的字典,没有别名的组不包含在内。
import rep = re.compile(r(\w+) (\w+)(?P<sign>.*), re.DOTALL)
print "p.pattern:", p.pattern
print "p.flags:", p.flags
print "p.groups:", p.groups
print "p.groupindex:", p.groupindex
### output ###
# p.pattern: (\w+) (\w+)(?P<sign>.*)
# p.flags: 16
# p.groups: 3
# p.groupindex: {sign: 3}
实例方法[ re模块方法]:
match(string[, pos[, endpos]]) re.match(pattern, string[, flags]):
这个方法将从string的pos下标处起尝试匹配pattern;如果pattern结束时仍可匹配,则返回一个Match对象;如果匹配过程中pattern无法匹配,或者匹配未结束就已到达endpos,则返回None。
pos和endpos的默认值分别为0和len(string);re.match()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
注意:这个方法并不是完全匹配。当pattern结束时若string还有剩余字符,仍然视为成功。想要完全匹配,可以在表达式末尾加上边界匹配符'$'。
示例参见2.1小节。
search(string[, pos[, endpos]]) re.search(pattern, string[, flags]):
这个方法用于查找字符串中可以匹配成功的子串。从string的pos下标处起尝试匹配pattern,如果pattern结束时仍可匹配,则返回一个Match对象;若无法匹配,则将pos加1后重新尝试匹配;直到pos=endpos时仍无法匹配则返回None。
pos和endpos的默认值分别为0和len(string));re.search()无法指定这两个参数,参数flags用于编译pattern时指定匹配模式。
# encoding: UTF-8import re
# 将正则表达式编译成Pattern对象
pattern = re.compile(rworld)
# 使用search()查找匹配的子串,不存在能匹配的子串时将返回None
# 这个例子中使用match()无法成功匹配
match = pattern.search(hello world!)
if match:
# 使用Match获得分组信息
print match.group()
### 输出 ###
# world
split(string[, maxsplit]) re.split(pattern, string[, maxsplit]):
按照能够匹配的子串将string分割后返回列表。maxsplit用于指定最大分割次数,不指定将全部分割。
import rep = re.compile(r\d+)
print p.split(one1two2three3four4)
### output ###
# [one, two, three, four, ]
findall(string[, pos[, endpos]]) re.findall(pattern, string[, flags]):
搜索string,以列表形式返回全部能匹配的子串。
import rep = re.compile(r\d+)
print p.findall(one1two2three3four4)
### output ###
# [1, 2, 3, 4]
finditer(string[, pos[, endpos]]) re.finditer(pattern, string[, flags]):
搜索string
,返回一个顺序访问每一个匹配结果(Match对象)的迭代器。
import rep = re.compile(r\d+)
for m in p.finditer(one1two2three3four4):
print m.group(),
### output ###
# 1 2 3 4
sub(repl, string[, count]) re.sub(pattern, repl, string[, count]):
使用repl替换string中每一个匹配的子串后返回替换后的字符串。
当repl是一个字符串时,可以使用\id或\g<id>、\g<name>引用分组,但不能使用编号0。
当repl是一个方法时,这个方法应当只接受一个参数(Match对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count用于指定最多替换次数,不指定时全部替换。
import rep = re.compile(r(\w+) (\w+))
s = i say, hello world!
print p.sub(r\2 \1, s)
def func(m):
return m.group(1).title() + + m.group(2).title()
print p.sub(func, s)
### output ###
# say i, world hello!
# I Say, Hello World!
subn(repl, string[, count]) re.sub(pattern, repl, string[, count]):
返回 (sub(repl, string[, count]), 替换次数)。
import rep = re.compile(r(\w+) (\w+))
s = i say, hello world!
print p.subn(r\2 \1, s)
def func(m):
return m.group(1).title() + + m.group(2).title()
print p.subn(func, s)
### output ###
# (say i, world hello!, 2)
# (I Say, Hello World!, 2)
以上就是Python对于正则表达式的支持。熟练掌握正则表达式是每一个程序员必须具备的技能,这年头没有不与字符串打交道的程序了。笔者也处于初级阶段,与君共勉,
另外,图中的特殊构造部分没有举出例子,用到这些的正则表达式是具有一定难度的。有兴趣可以思考一下,如何匹配不是以abc开头的单词,
到此这篇关于Python正则表达式总结分享的文章就介绍到这了,更多相关Python正则表达式内容请搜索盛行IT软件开发工作室以前的文章或继续浏览下面的相关文章希望大家以后多多支持盛行IT软件开发工作室!
郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。