python文本文档处理,python操作文本
本文主要和大家分享25个值得收藏的Python文本处理案例。Python文本处理是一个非常常见的功能。本文整理了各种文本抽取和NLP相关案例,至今仍很有收藏价值。文章很长,可以收藏,会一直用。
00-1010 1.提取PDF内容2。提取单词内容3。提取网页内容4。读取Json数据5。读取CSV数据6。删除字符串7中的标点符号。删除停用词8。正确拼写9。用NLTK和TextBlob 10标记单词。提取句子、单词或短语的词干列表。对句子或短语单词使用NLTK。形状12使用NLTK查找文本文件中每个单词的频率13从语料库创建单词云14NLTK词汇散点图15使用countvectorizer将文本转换为数字16使用TF-IDF创建文档术语矩阵17为给定的句子生成N元语法18使用sklearn count用二元组对词汇规范进行矢量化19使用文本从blob中提取名词短语20如何使用文本blob计算单词-单词共现矩阵21用于情感分析22 使用Goslate进行语言翻译23使用文本块进行语言检测和翻译24使用文本块进行定义和同义词25使用文本块进行反义词列表
目录
# pip安装PyPDF2安装PyPDF2
导入PyPDF2
从PyPDF2导入PDF文件阅读器
#创建pdf文件对象。
pdf=open(test.pdf , rb )
#创建pdf阅读器对象。
pdf_reader=PyPDF2。pdf文件阅读器(pdf)
#检查pdf文件的总页数。
打印(总页数: ,pdf_reader.numPages)
#创建页面对象。
page=pdf_reader.getPage(200)
#从特定页码提取数据。
print(page.extractText())
#关闭对象。
pdf.close()
1提取 PDF 内容
# pip安装python-docx安装python-docx
导入docx
定义主():
尝试:
doc=docx。Document(test.docx) #创建word reader对象。
数据=
全文=[]
文件第3360段中的段落
全文.追加(段落文本)
数据=\n 。加入(全文)
打印(数据)
IOError:除外
print(打开文件时出错!)
返回
if __name__==__main__:
主()
2提取 Word 内容
# pip安装bs4安装bs4
从urllib.request导入请求,urlopen
从bs4导入BeautifulSoup
req=Request( http://www . CME group.com/trading/products/# sortField=oisortAsc=false spencers=3 page=1
cleared=1&group=1,
headers={User-Agent: Mozilla/5.0})
webpage = urlopen(req).read()
# Parsing
soup = BeautifulSoup(webpage, html.parser)
# Formating the parsed html file
strhtm = soup.prettify()
# Print first 500 lines
print(strhtm[:500])
# Extract meta tag value
print(soup.title.string)
print(soup.find(meta, attrs={property:og:description}))
# Extract anchor tag value
for x in soup.find_all(a):
print(x.string)
# Extract Paragraph tag value
for x in soup.find_all(p):
print(x.text)
4读取 Json 数据
import requestsimport json
r = requests.get("https://support.oneskyapp.com/hc/en-us/article_attachments/202761727/example_2.json")
res = r.json()
# Extract specific node content.
print(res[quiz][sport])
# Dump data as string
data = json.dumps(res)
print(data)
5读取 CSV 数据
import csvwith open(test.csv,r) as csv_file:
reader =csv.reader(csv_file)
next(reader) # Skip first row
for row in reader:
print(row)
6删除字符串中的标点符号
import reimport string
data = "Stuning even for the non-gamer: This sound track was beautiful!\
It paints the senery in your mind so well I would recomend\
it even to people who hate vid. game music! I have played the game Chrono \
Cross but out of all of the games I have ever played it has the best music! \
It backs away from crude keyboarding and takes a fresher step with grate\
guitars and soulful orchestras.\
It would impress anyone who cares to listen!"
# Methood 1 : Regex
# Remove the special charaters from the read string.
no_specials_string = re.sub([!#?,.:";], , data)
print(no_specials_string)
# Methood 2 : translate()
# Rake translator object
translator = str.maketrans(, , string.punctuation)
data = data.translate(translator)
print(data)
7使用 NLTK 删除停用词
from nltk.corpus import stopwordsdata = [Stuning even for the non-gamer: This sound track was beautiful!\
It paints the senery in your mind so well I would recomend\
it even to people who hate vid. game music! I have played the game Chrono \
Cross but out of all of the games I have ever played it has the best music! \
It backs away from crude keyboarding and takes a fresher step with grate\
guitars and soulful orchestras.\
It would impress anyone who cares to listen!]
# Remove stop words
stopwords = set(stopwords.words(english))
output = []
for sentence in data:
temp_list = []
for word in sentence.split():
if word.lower() not in stopwords:
temp_list.append(word)
output.append( .join(temp_list))
print(output)
8使用 TextBlob 更正拼写
from textblob import TextBlobdata = "Natural language is a cantral part of our day to day life, and its so antresting to work on any problem related to langages."
output = TextBlob(data).correct()
print(output)
9使用 NLTK 和 TextBlob 的词标记化
import nltkfrom textblob import TextBlob
data = "Natural language is a central part of our day to day life, and its so interesting to work on any problem related to languages."
nltk_output = nltk.word_tokenize(data)
textblob_output = TextBlob(data).words
print(nltk_output)
print(textblob_output)
Output:
['Natural', 'language', 'is', 'a', 'central', 'part', 'of', 'our', 'day', 'to', 'day', 'life', ',', 'and', 'it', "'s", 'so', 'interesting', 'to', 'work', 'on', 'any', 'problem', 'related', 'to', 'languages', '.']
['Natural', 'language', 'is', 'a', 'central', 'part', 'of', 'our', 'day', 'to', 'day', 'life', 'and', 'it', "'s", 'so', 'interesting', 'to', 'work', 'on', 'any', 'problem', 'related', 'to', 'languages']
10使用 NLTK 提取句子单词或短语的词干列表
from nltk.stem import PorterStemmerst = PorterStemmer()
text = [Where did he learn to dance like that?,
His eyes were dancing with humor.,
She shook her head and danced away,
Alex was an excellent dancer.]
output = []
for sentence in text:
output.append(" ".join([st.stem(i) for i in sentence.split()]))
for item in output:
print(item)
print("-" * 50)
print(st.stem(jumping), st.stem(jumps), st.stem(jumped))
Output:
where did he learn to danc like that?
hi eye were danc with humor.
she shook her head and danc away
alex wa an excel dancer.
--------------------------------------------------
jump jump jump
11使用 NLTK 进行句子或短语词形还原
from nltk.stem import WordNetLemmatizerwnl = WordNetLemmatizer()
text = [She gripped the armrest as he passed two cars at a time.,
Her car was in full view.,
A number of cars carried out of state license plates.]
output = []
for sentence in text:
output.append(" ".join([wnl.lemmatize(i) for i in sentence.split()]))
for item in output:
print(item)
print("*" * 10)
print(wnl.lemmatize(jumps, n))
print(wnl.lemmatize(jumping, v))
print(wnl.lemmatize(jumped, v))
print("*" * 10)
print(wnl.lemmatize(saddest, a))
print(wnl.lemmatize(happiest, a))
print(wnl.lemmatize(easiest, a))
Output:
She gripped the armrest a he passed two car at a time.
Her car wa in full view.
A number of car carried out of state license plates.
**********
jump
jump
jump
**********
sad
happy
easy
12使用 NLTK 从文本文件中查找每个单词的频率
import nltkfrom nltk.corpus import webtext
from nltk.probability import FreqDist
nltk.download(webtext)
wt_words = webtext.words(testing.txt)
data_analysis = nltk.FreqDist(wt_words)
# Lets take the specific words only if their frequency is greater than 3.
filter_words = dict([(m, n) for m, n in data_analysis.items() if len(m) > 3])
for key in sorted(filter_words):
print("%s: %s" % (key, filter_words[key]))
data_analysis = nltk.FreqDist(filter_words)
data_analysis.plot(25, cumulative=False)
Output:
[nltk_data] Downloading package webtext to
[nltk_data] C:\Users\amit\AppData\Roaming\nltk_data...
[nltk_data] Unzipping corpora\webtext.zip.
1989: 1
Accessing: 1
Analysis: 1
Anyone: 1
Chapter: 1
Coding: 1
Data: 1
...
13从语料库中创建词云
import nltkfrom nltk.corpus import webtext
from nltk.probability import FreqDist
from wordcloud import WordCloud
import matplotlib.pyplot as plt
nltk.download(webtext)
wt_words = webtext.words(testing.txt) # Sample data
data_analysis = nltk.FreqDist(wt_words)
filter_words = dict([(m, n) for m, n in data_analysis.items() if len(m) > 3])
wcloud = WordCloud().generate_from_frequencies(filter_words)
# Plotting the wordcloud
plt.imshow(wcloud, interpolation="bilinear")
plt.axis("off")
(-0.5, 399.5, 199.5, -0.5)
plt.show()
14NLTK 词法散布图
import nltkfrom nltk.corpus import webtext
from nltk.probability import FreqDist
from wordcloud import WordCloud
import matplotlib.pyplot as plt
words = [data, science, dataset]
nltk.download(webtext)
wt_words = webtext.words(testing.txt) # Sample data
points = [(x, y) for x in range(len(wt_words))
for y in range(len(words)) if wt_words[x] == words[y]]
if points:
x, y = zip(*points)
else:
x = y = ()
plt.plot(x, y, "rx", scalex=.1)
plt.yticks(range(len(words)), words, color="b")
plt.ylim(-1, len(words))
plt.title("Lexical Dispersion Plot")
plt.xlabel("Word Offset")
plt.show()
15使用 countvectorizer 将文本转换为数字
import pandas as pdfrom sklearn.feature_extraction.text import CountVectorizer
# Sample data for analysis
data1 = "Java is a language for programming that develops a software for several platforms. A compiled code or bytecode on Java application can run on most of the operating systems including Linux, Mac operating system, and Linux. Most of the syntax of Java is derived from the C++ and C languages."
data2 = "Python supports multiple programming paradigms and comes up with a large standard library, paradigms included are object-oriented, imperative, functional and procedural."
data3 = "Go is typed statically compiled language. It was created by Robert Griesemer, Ken Thompson, and Rob Pike in 2009. This language offers garbage collection, concurrency of CSP-style, memory safety, and structural typing."
df1 = pd.DataFrame({Java: [data1], Python: [data2], Go: [data2]})
# Initialize
vectorizer = CountVectorizer()
doc_vec = vectorizer.fit_transform(df1.iloc[0])
# Create dataFrame
df2 = pd.DataFrame(doc_vec.toarray().transpose(),
index=vectorizer.get_feature_names())
# Change column headers
df2.columns = df1.columns
print(df2)
Output:
Go Java Python
and 2 2 2
application 0 1 0
are 1 0 1
bytecode 0 1 0
can 0 1 0
code 0 1 0
comes 1 0 1
compiled 0 1 0
derived 0 1 0
develops 0 1 0
for 0 2 0
from 0 1 0
functional 1 0 1
imperative 1 0 1
...
16使用 TF-IDF 创建文档术语矩阵
import pandas as pdfrom sklearn.feature_extraction.text import TfidfVectorizer
# Sample data for analysis
data1 = "Java is a language for programming that develops a software for several platforms. A compiled code or bytecode on Java application can run on most of the operating systems including Linux, Mac operating system, and Linux. Most of the syntax of Java is derived from the C++ and C languages."
data2 = "Python supports multiple programming paradigms and comes up with a large standard library, paradigms included are object-oriented, imperative, functional and procedural."
data3 = "Go is typed statically compiled language. It was created by Robert Griesemer, Ken Thompson, and Rob Pike in 2009. This language offers garbage collection, concurrency of CSP-style, memory safety, and structural typing."
df1 = pd.DataFrame({Java: [data1], Python: [data2], Go: [data2]})
# Initialize
vectorizer = TfidfVectorizer()
doc_vec = vectorizer.fit_transform(df1.iloc[0])
# Create dataFrame
df2 = pd.DataFrame(doc_vec.toarray().transpose(),
index=vectorizer.get_feature_names())
# Change column headers
df2.columns = df1.columns
print(df2)
Output:
Go Java Python
and 0.323751 0.137553 0.323751
application 0.000000 0.116449 0.000000
are 0.208444 0.000000 0.208444
bytecode 0.000000 0.116449 0.000000
can 0.000000 0.116449 0.000000
code 0.000000 0.116449 0.000000
comes 0.208444 0.000000 0.208444
compiled 0.000000 0.116449 0.000000
derived 0.000000 0.116449 0.000000
develops 0.000000 0.116449 0.000000
for 0.000000 0.232898 0.000000
...
17为给定句子生成 N-gram
自然语言工具包:NLTK
import nltkfrom nltk.util import ngrams
# Function to generate n-grams from sentences.
def extract_ngrams(data, num):
n_grams = ngrams(nltk.word_tokenize(data), num)
return [ .join(grams) for grams in n_grams]
data = A class is a blueprint for the object.
print("1-gram: ", extract_ngrams(data, 1))
print("2-gram: ", extract_ngrams(data, 2))
print("3-gram: ", extract_ngrams(data, 3))
print("4-gram: ", extract_ngrams(data, 4))
文本处理工具:TextBlob
from textblob import TextBlob# Function to generate n-grams from sentences.
def extract_ngrams(data, num):
n_grams = TextBlob(data).ngrams(num)
return [ .join(grams) for grams in n_grams]
data = A class is a blueprint for the object.
print("1-gram: ", extract_ngrams(data, 1))
print("2-gram: ", extract_ngrams(data, 2))
print("3-gram: ", extract_ngrams(data, 3))
print("4-gram: ", extract_ngrams(data, 4))
Output:
1-gram: ['A', 'class', 'is', 'a', 'blueprint', 'for', 'the', 'object']
2-gram: ['A class', 'class is', 'is a', 'a blueprint', 'blueprint for', 'for the', 'the object']
3-gram: ['A class is', 'class is a', 'is a blueprint', 'a blueprint for', 'blueprint for the', 'for the object']
4-gram: ['A class is a', 'class is a blueprint', 'is a blueprint for', 'a blueprint for the', 'blueprint for the object']
18使用带有二元组的 sklearn CountVectorize 词汇规范
import pandas as pdfrom sklearn.feature_extraction.text import CountVectorizer
# Sample data for analysis
data1 = "Machine language is a low-level programming language. It is easily understood by computers but difficult to read by people. This is why people use higher level programming languages. Programs written in high-level languages are also either compiled and/or interpreted into machine language so that computers can execute them."
data2 = "Assembly language is a representation of machine language. In other words, each assembly language instruction translates to a machine language instruction. Though assembly language statements are readable, the statements are still low-level. A disadvantage of assembly language is that it is not portable, because each platform comes with a particular Assembly Language"
df1 = pd.DataFrame({Machine: [data1], Assembly: [data2]})
# Initialize
vectorizer = CountVectorizer(ngram_range=(2, 2))
doc_vec = vectorizer.fit_transform(df1.iloc[0])
# Create dataFrame
df2 = pd.DataFrame(doc_vec.toarray().transpose(),
index=vectorizer.get_feature_names())
# Change column headers
df2.columns = df1.columns
print(df2)
Output:
Assembly Machine
also either 0 1
and or 0 1
are also 0 1
are readable 1 0
are still 1 0
assembly language 5 0
because each 1 0
but difficult 0 1
by computers 0 1
by people 0 1
can execute 0 1
...
19使用 TextBlob 提取名词短语
from textblob import TextBlob#Extract noun
blob = TextBlob("Canada is a country in the northern part of North America.")
for nouns in blob.noun_phrases:
print(nouns)
Output:
canada
northern part
america
20如何计算词-词共现矩阵
import numpy as npimport nltk
from nltk import bigrams
import itertools
import pandas as pd
def generate_co_occurrence_matrix(corpus):
vocab = set(corpus)
vocab = list(vocab)
vocab_index = {word: i for i, word in enumerate(vocab)}
# Create bigrams from all words in corpus
bi_grams = list(bigrams(corpus))
# Frequency distribution of bigrams ((word1, word2), num_occurrences)
bigram_freq = nltk.FreqDist(bi_grams).most_common(len(bi_grams))
# Initialise co-occurrence matrix
# co_occurrence_matrix[current][previous]
co_occurrence_matrix = np.zeros((len(vocab), len(vocab)))
# Loop through the bigrams taking the current and previous word,
# and the number of occurrences of the bigram.
for bigram in bigram_freq:
current = bigram[0][1]
previous = bigram[0][0]
count = bigram[1]
pos_current = vocab_index[current]
pos_previous = vocab_index[previous]
co_occurrence_matrix[pos_current][pos_previous] = count
co_occurrence_matrix = np.matrix(co_occurrence_matrix)
# return the matrix and the index
return co_occurrence_matrix, vocab_index
text_data = [[Where, Python, is, used],
[What, is, Python used, in],
[Why, Python, is, best],
[What, companies, use, Python]]
# Create one list using many lists
data = list(itertools.chain.from_iterable(text_data))
matrix, vocab_index = generate_co_occurrence_matrix(data)
data_matrix = pd.DataFrame(matrix, index=vocab_index,
columns=vocab_index)
print(data_matrix)
Output:
best use What Where ... in is Python used
best 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0
use 0.0 0.0 0.0 0.0 ... 0.0 1.0 0.0 0.0
What 1.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
Where 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
Pythonused 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0
Why 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 1.0
companies 0.0 1.0 0.0 1.0 ... 1.0 0.0 0.0 0.0
in 0.0 0.0 0.0 0.0 ... 0.0 0.0 1.0 0.0
is 0.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 0.0
Python 0.0 0.0 0.0 0.0 ... 0.0 0.0 0.0 0.0
used 0.0 0.0 1.0 0.0 ... 0.0 0.0 0.0 0.0
[11 rows x 11 columns]
21使用 TextBlob 进行情感分析
from textblob import TextBlobdef sentiment(polarity):
if blob.sentiment.polarity < 0:
print("Negative")
elif blob.sentiment.polarity > 0:
print("Positive")
else:
print("Neutral")
blob = TextBlob("The movie was excellent!")
print(blob.sentiment)
sentiment(blob.sentiment.polarity)
blob = TextBlob("The movie was not bad.")
print(blob.sentiment)
sentiment(blob.sentiment.polarity)
blob = TextBlob("The movie was ridiculous.")
print(blob.sentiment)
sentiment(blob.sentiment.polarity)
Output:
Sentiment(polarity=1.0, subjectivity=1.0)
Positive
Sentiment(polarity=0.3499999999999999, subjectivity=0.6666666666666666)
Positive
Sentiment(polarity=-0.3333333333333333, subjectivity=1.0)
Negative
22使用 Goslate 进行语言翻译
import goslatetext = "Comment vas-tu?"
gs = goslate.Goslate()
translatedText = gs.translate(text, en)
print(translatedText)
translatedText = gs.translate(text, zh)
print(translatedText)
translatedText = gs.translate(text, de)
print(translatedText)
23使用 TextBlob 进行语言检测和翻译
from textblob import TextBlobblob = TextBlob("Comment vas-tu?")
print(blob.detect_language())
print(blob.translate(to=es))
print(blob.translate(to=en))
print(blob.translate(to=zh))
Output:
fr
¿Como estas tu?
How are you?
你好吗?
24使用 TextBlob 获取定义和同义词
from textblob import TextBlobfrom textblob import Word
text_word = Word(safe)
print(text_word.definitions)
synonyms = set()
for synset in text_word.synsets:
for lemma in synset.lemmas():
synonyms.add(lemma.name())
print(synonyms)
Output:
['strongbox where valuables can be safely kept', 'a ventilated or refrigerated cupboard for securing provisions from pests', 'contraceptive device consisting of a sheath of thin rubber or latex that is worn over the penis during intercourse', 'free from danger or the risk of harm', '(of an undertaking) secure from risk', 'having reached a base without being put out', 'financially sound']
{'secure', 'rubber', 'good', 'safety', 'safe', 'dependable', 'condom', 'prophylactic'}
25使用 TextBlob 获取反义词列表
from textblob import TextBlobfrom textblob import Word
text_word = Word(safe)
antonyms = set()
for synset in text_word.synsets:
for lemma in synset.lemmas():
if lemma.antonyms():
antonyms.add(lemma.antonyms()[0].name())
print(antonyms)
Output:
{'dangerous', 'out'}
到此这篇关于25个值得收藏的Python文本处理案例的文章就介绍到这了,更多相关Python文本处理案例内容请搜索盛行IT软件开发工作室以前的文章或继续浏览下面的相关文章希望大家以后多多支持盛行IT软件开发工作室!
郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。