使用opencv和python实现图像的智能处理,python opencv图像识别教程整理
ROS通过一个名为CvBridge的函数包将采集到的图像数据转换成OpenCV格式,经过OpenCV处理后送回ROS进行图像显示(应用)。本文主要介绍如何在Python中结合ROS和OpenCV处理图像,有需要的可以参考一下。
00-1010一、安装ROS-OpenCV II。简单案例分析1。USB _ cam . launch 2 . cv _ bridge _ test . py3 . rqt _ image _ view III。与CvBridge 1相关的API。imgmsg _ to _ cv2 () 2。cv2 _ to _ imgmsg()四、用ROS OpenCV实现人脸检测案例1。USB _ cam . launch 2 . face _ detector . launch 2.1 launch 2.2 face _ detector . py 2.3两个xml文件3.rqt_image_view V、用ROS OpenCV实现帧差法物体跟踪1。USB _ cam . launch 2 . motion _ detector . launch 2.1 launch 2.2 motion _ detector . py3 . rqt _ image _ view
目录
安装opencv sudo apt-get安装ROS-kinetic-vision-opencv libopencv-dev python-opencv
ROS图像处理依赖于OpenCV库。ROS通过一个名为CvBridge的函数包将采集到的图像数据转换成OpenCV格式,经过OpenCV处理后送回ROS进行图像显示(应用),如下图所示:
一、安装ROS-OpenCV
我们使用ROS驱动获取摄像头数据,通过CvBridge将ROS获取的数据转换成OpenCV要求的格式,调用OpenCV的算法库对这张图片进行处理(比如画一个圆),然后返回给ROS进行rviz显示。
二、简单案例分析
首先,我们建立一个启动文件,它可以调用相机驱动程序来获取图像数据。运行启动文件roslaunch xxx(功能包名称)usb_cam.launch
发动
node name= USB _ cam pkg= USB _ cam type= USB _ cam _ node output= screen
param name= video _ device value=/dev/video 0 /
param name= image _ width value= 1280 /
param name= image _ height value= 720 /
param name= pixel _ format value= yuyv /
param name= camera _ frame _ id value= USB _ cam /
param name= io _ method value= mmap /
/节点
/启动
1.usb_cam.launch
.py
建立一个py文件,是python2的。实现接收ROS发的图像信息,在图像上画一个圆后,返回给ROS。返回的话题名称是cv_bridge_image
。运行py文件rosrun xxx(功能包名) cv_bridge_test.py
如果出现权限不够的情况,记得切换到py文件目录下执行:sudo chmod +x *.py
#!/usr/bin/env python# -*- coding: utf-8 -*-
import rospy
import cv2
from cv_bridge import CvBridge, CvBridgeError
from sensor_msgs.msg import Image
class image_converter:
def __init__(self):
# 创建cv_bridge,声明图像的发布者和订阅者
self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber("/usb_cam/image_raw", Image, self.callback)
def callback(self,data):
# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print e
# 在opencv的显示窗口中绘制一个圆,作为标记
(rows,cols,channels) = cv_image.shape
if cols > 60 and rows > 60 :
cv2.circle(cv_image, (60, 60), 30, (0,0,255), -1)
# 显示Opencv格式的图像
cv2.imshow("Image window", cv_image)
cv2.waitKey(3)
# 再将opencv格式额数据转换成ros image格式的数据发布
try:
self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
except CvBridgeError as e:
print e
if __name__ == __main__:
try:
# 初始化ros节点
rospy.init_node("cv_bridge_test")
rospy.loginfo("Starting cv_bridge_test node")
image_converter()
rospy.spin()
except KeyboardInterrupt:
print "Shutting down cv_bridge_test node."
cv2.destroyAllWindows()
3.rqt_image_view
在终端下执行rqt_image_view,订阅cv_bridge_image话题,可以发现OpenCV处理之后的图像在ROS中显示出来。
三、CvBridge相关API
1.imgmsg_to_cv2()
将ROS图像消息转换成OpenCV图像数据;
# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
except CvBridgeError as e:
print e
2.cv2_to_imgmsg()
将OpenCV格式的图像数据转换成ROS图像消息;
# 再将opencv格式额数据转换成ros image格式的数据发布try:
self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
except CvBridgeError as e:
print e
四、利用ROS+OpenCV实现人脸检测案例
1.usb_cam.launch
这个launch和上一个案例一样先打开摄像头驱动获取图像数据。运行launch文件roslaunch xxx(功能包名) usb_cam.launch
<launch><node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
<param name="video_device" value="/dev/video0" />
<param name="image_width" value="1280" />
<param name="image_height" value="720" />
<param name="pixel_format" value="yuyv" />
<param name="camera_frame_id" value="usb_cam" />
<param name="io_method" value="mmap"/>
</node>
</launch>
2.face_detector.launch
人脸检测算法采用基于Harr特征的级联分类器对象检测算法,检测效果并不佳。但是这里只是为了演示如何使用ROS和OpenCV进行图像处理,所以不必在乎算法本身效果。整个launch调用了一个py文件和两个xml文件,分别如下:
2.1 launch
<launch><node pkg="robot_vision" name="face_detector" type="face_detector.py" output="screen">
<remap from="input_rgb_image" to="/usb_cam/image_raw" />
<rosparam>
haar_scaleFactor: 1.2
haar_minNeighbors: 2
haar_minSize: 40
haar_maxSize: 60
</rosparam>
<param name="cascade_1" value="$(find robot_vision)/data/haar_detectors/haarcascade_frontalface_alt.xml" />
<param name="cascade_2" value="$(find robot_vision)/data/haar_detectors/haarcascade_profileface.xml" />
</node>
</launch>
2.2 face_detector.py
#!/usr/bin/env python# -*- coding: utf-8 -*-
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image, RegionOfInterest
from cv_bridge import CvBridge, CvBridgeError
class faceDetector:
def __init__(self):
rospy.on_shutdown(self.cleanup);
# 创建cv_bridge
self.bridge = CvBridge()
self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)
# 获取haar特征的级联表的XML文件,文件路径在launch文件中传入
cascade_1 = rospy.get_param("~cascade_1", "")
cascade_2 = rospy.get_param("~cascade_2", "")
# 使用级联表初始化haar特征检测器
self.cascade_1 = cv2.CascadeClassifier(cascade_1)
self.cascade_2 = cv2.CascadeClassifier(cascade_2)
# 设置级联表的参数,优化人脸识别,可以在launch文件中重新配置
self.haar_scaleFactor = rospy.get_param("~haar_scaleFactor", 1.2)
self.haar_minNeighbors = rospy.get_param("~haar_minNeighbors", 2)
self.haar_minSize = rospy.get_param("~haar_minSize", 40)
self.haar_maxSize = rospy.get_param("~haar_maxSize", 60)
self.color = (50, 255, 50)
# 初始化订阅rgb格式图像数据的订阅者,此处图像topic的话题名可以在launch文件中重映射
self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1)
def image_callback(self, data):
# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
frame = np.array(cv_image, dtype=np.uint8)
except CvBridgeError, e:
print e
# 创建灰度图像
grey_image = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# 创建平衡直方图,减少光线影响
grey_image = cv2.equalizeHist(grey_image)
# 尝试检测人脸
faces_result = self.detect_face(grey_image)
# 在opencv的窗口中框出所有人脸区域
if len(faces_result)>0:
for face in faces_result:
x, y, w, h = face
cv2.rectangle(cv_image, (x, y), (x+w, y+h), self.color, 2)
# 将识别后的图像转换成ROS消息并发布
self.image_pub.publish(self.bridge.cv2_to_imgmsg(cv_image, "bgr8"))
def detect_face(self, input_image):
# 首先匹配正面人脸的模型
if self.cascade_1:
faces = self.cascade_1.detectMultiScale(input_image,
self.haar_scaleFactor,
self.haar_minNeighbors,
cv2.CASCADE_SCALE_IMAGE,
(self.haar_minSize, self.haar_maxSize))
# 如果正面人脸匹配失败,那么就尝试匹配侧面人脸的模型
if len(faces) == 0 and self.cascade_2:
faces = self.cascade_2.detectMultiScale(input_image,
self.haar_scaleFactor,
self.haar_minNeighbors,
cv2.CASCADE_SCALE_IMAGE,
(self.haar_minSize, self.haar_maxSize))
return faces
def cleanup(self):
print "Shutting down vision node."
cv2.destroyAllWindows()
if __name__ == __main__:
try:
# 初始化ros节点
rospy.init_node("face_detector")
faceDetector()
rospy.loginfo("Face detector is started..")
rospy.loginfo("Please subscribe the ROS image.")
rospy.spin()
except KeyboardInterrupt:
print "Shutting down face detector node."
cv2.destroyAllWindows()
2.3 两个xml文件
链接
3.rqt_image_view
运行完上述两个launch文件后,在终端下执行rqt_image_view,订阅cv_bridge_image话题,可以发现OpenCV处理之后的图像在ROS中显示出来。
五、利用ROS+OpenCV实现帧差法物体追踪
1.usb_cam.launch
这个launch和前两个案例一样先打开摄像头驱动获取图像数据。运行launch文件roslaunch xxx(功能包名) usb_cam.launch
<launch><node name="usb_cam" pkg="usb_cam" type="usb_cam_node" output="screen" >
<param name="video_device" value="/dev/video0" />
<param name="image_width" value="1280" />
<param name="image_height" value="720" />
<param name="pixel_format" value="yuyv" />
<param name="camera_frame_id" value="usb_cam" />
<param name="io_method" value="mmap"/>
</node>
</launch>
2.motion_detector.launch
物体追踪方法采用帧差法,追踪效果并不佳。但是这里只是为了演示如何使用ROS和OpenCV进行图像处理,所以不必在乎算法本身效果。整个launch调用了一个py文件,如下:
2.1 launch
<launch><node pkg="robot_vision" name="motion_detector" type="motion_detector.py" output="screen">
<remap from="input_rgb_image" to="/usb_cam/image_raw" />
<rosparam>
minArea: 500
threshold: 25
</rosparam>
</node>
</launch>
2.2 motion_detector.py
#!/usr/bin/env python# -*- coding: utf-8 -*-
import rospy
import cv2
import numpy as np
from sensor_msgs.msg import Image, RegionOfInterest
from cv_bridge import CvBridge, CvBridgeError
class motionDetector:
def __init__(self):
rospy.on_shutdown(self.cleanup);
# 创建cv_bridge
self.bridge = CvBridge()
self.image_pub = rospy.Publisher("cv_bridge_image", Image, queue_size=1)
# 设置参数:最小区域、阈值
self.minArea = rospy.get_param("~minArea", 500)
self.threshold = rospy.get_param("~threshold", 25)
self.firstFrame = None
self.text = "Unoccupied"
# 初始化订阅rgb格式图像数据的订阅者,此处图像topic的话题名可以在launch文件中重映射
self.image_sub = rospy.Subscriber("input_rgb_image", Image, self.image_callback, queue_size=1)
def image_callback(self, data):
# 使用cv_bridge将ROS的图像数据转换成OpenCV的图像格式
try:
cv_image = self.bridge.imgmsg_to_cv2(data, "bgr8")
frame = np.array(cv_image, dtype=np.uint8)
except CvBridgeError, e:
print e
# 创建灰度图像
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)
# 使用两帧图像做比较,检测移动物体的区域
if self.firstFrame is None:
self.firstFrame = gray
return
frameDelta = cv2.absdiff(self.firstFrame, gray)
thresh = cv2.threshold(frameDelta, self.threshold, 255, cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, None, iterations=2)
binary, cnts, hierarchy= cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
for c in cnts:
# 如果检测到的区域小于设置值,则忽略
if cv2.contourArea(c) < self.minArea:
continue
# 在输出画面上框出识别到的物体
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x + w, y + h), (50, 255, 50), 2)
self.text = "Occupied"
# 在输出画面上打当前状态和时间戳信息
cv2.putText(frame, "Status: {}".format(self.text), (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
# 将识别后的图像转换成ROS消息并发布
self.image_pub.publish(self.bridge.cv2_to_imgmsg(frame, "bgr8"))
def cleanup(self):
print "Shutting down vision node."
cv2.destroyAllWindows()
if __name__ == __main__:
try:
# 初始化ros节点
rospy.init_node("motion_detector")
rospy.loginfo("motion_detector node is started...")
rospy.loginfo("Please subscribe the ROS image.")
motionDetector()
rospy.spin()
except KeyboardInterrupt:
print "Shutting down motion detector node."
cv2.destroyAllWindows()
3.rqt_image_view
运行完上述两个launch文件后,在终端下执行rqt_image_view,订阅cv_bridge_image话题,可以发现OpenCV处理之后的图像在ROS中显示出来。(鉴于我的测试环境比较糟糕,并且这个算法本身精度不高,就不展示最终效果了)
到此这篇关于Python中ROS和OpenCV结合处理图像问题的文章就介绍到这了,更多相关ROS和OpenCV处理图像内容请搜索盛行IT软件开发工作室以前的文章或继续浏览下面的相关文章希望大家以后多多支持盛行IT软件开发工作室!
郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。