python数据可视化折线图,pyecharts 柱状图 折线图混用

  python数据可视化折线图,pyecharts 柱状图 折线图混用

  本文主要介绍Python可视化神器pyecharts绘制折线图的细节。折线图和条形图一样,是我们日常生活中最可见的图例。当然,相信大家都熟悉它的优势和适用场景。想要快速得到趋势,把握趋势这个词,就会很快想到用折线图来表示。

  00-1010折线图介绍折线图模板系列双线图(显示最高和最低气温的趋势)面积折线图(靠近Y轴)简单折线图(无动态和数据标签)连接空白数据折线图对数轴折线图示例折线图堆叠(适合多折线图显示)2D曲线折线图(两个数据)多维折线图(颜色对比)梯形折线图js高渲染折线图

  

目录

  和柱状图一样,折线图是我们日常生活中最直观的图例。当然,它的优势和适用场景大家都不陌生。想要快速得到趋势,掌握趋势这个词,就会很快想到用折线图来表示。线图是通过直线将这些点按一定顺序连接起来形成的图形,适用于数据以有序的因变量变化。它的特点是用类别反映事物变化的趋势,能够清晰地显示数据的增长趋势、增长速度、增长规律、峰值等特征。

  优点:

  可以很好的展现沿着某个维度的变化趋势,比较同一维度多组数据的趋势,适合展现大型数据集。缺点:不适合在每张图片上显示太多的折线。

  

折线图介绍

  

折线图模板系列

  双线图显示在一个图表中,必须有相同的维度,然后有两个不同的数据集。例如,如果一天的温度有最高和最低温度,我们可以用这个作为显示。

  将pyecharts.options作为选项导入

  从pyecharts.charts导入行

  Week_name_list=[星期一,星期二,星期三,星期四,星期五,星期六,星期日]

  高温=[11,11,15,13,12,13,10]

  low_temperature=[1,-2,2,5,3,2,0]

  (

  Line(init_opts=opts。InitOpts(宽度=1000px ,高度=600px ))。add _ xaxis(xaxis _ data=week _ name _ list)。add_yaxis(

  Series_name=最高温度,

  y轴=高温,

  #显示最大值和最小值

  # markpoint_opts=opts。MarkPointOpts(

  # data=[

  # opts.markpointitem (type _= max ,name= max ),

  # opts.markpointitem (type _= min ,name= min ),

  # ]

  # ),

  #显示平均值

  # markline_opts=opts。MarkLineOpts(

  # data=[opts . markline item(type _= average ,name= average)]

  # ),

  )。add_yaxis(

  Series_name=最低温度,

  y轴=低温,

  #设置刻度标签

  # markpoint_opts=opts。MarkPointOpts(

  # data=[opts . markpointitem(value=-2,name=本周最低,x=1,y=-1.5)]

  # ),

  # markline_opts=opts。MarkLineOpts(

  # data=[

  # opts . markline item(type _= average ,name= average ),

  # opts。MarkLineItem(symbol=none ,x=90% ,y=max ),

  # opts . markline item(symbol= circle ,type _= max ,name=最高点),

  # ]

  # ),

  )。集合_全局_opts(

  title _ opts=opts . title topts(title=未来一周气温变化,subtitle= subtitle ),

  # tooltip_opts=opts。TooltipOpts(触发器=

  axis"),

  # toolbox_opts=opts.ToolboxOpts(is_show=True),

  xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False),

  )

  .render("最低最高温度折线图.html")

  )

  print("图表已生成!请查收!")

  

  

  

面积折线图(紧贴Y轴)

  还记得二重积分吗,面积代表什么?有时候我们就想要看谁围出来的面积大,这个在物理的实际运用中比较常见,下面来看看效果吧。

  

import pyecharts.options as opts

  from pyecharts.charts import Line

  from pyecharts.faker import Faker

  from pyecharts.globals import ThemeType

  c = (

  Line({"theme": ThemeType.MACARONS})

  .add_xaxis(Faker.choose())

  .add_yaxis("商家A", Faker.values(), is_smooth=True)

  .add_yaxis("商家B", Faker.values(), is_smooth=True)

  .set_series_opts(

  areastyle_opts=opts.AreaStyleOpts(opacity=0.5),

  label_opts=opts.LabelOpts(is_show=False),

  )

  .set_global_opts(

  title_opts=opts.TitleOpts(title="标题"),

  xaxis_opts=opts.AxisOpts(

  axistick_opts=opts.AxisTickOpts(is_align_with_label=True),

  is_scale=False,

  boundary_gap=False,

  name=类别,

  name_location=middle,

  name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20

  name_textstyle_opts=opts.TextStyleOpts(

  font_family=Times New Roman,

  font_size=16 # 标签字体大小

  )),

  yaxis_opts=opts.AxisOpts(

  name=数量,

  name_location=middle,

  name_gap=30,

  name_textstyle_opts=opts.TextStyleOpts(

  font_family=Times New Roman,

  font_size=16

  # font_weight=bolder,

  )),

  # toolbox_opts=opts.ToolboxOpts() # 工具选项

  )

  .render("面积折线图-紧贴Y轴.html")

  )

  print("请查收!")

  

  

  

简单折线图(无动态和数据标签)

  此模板和Excel里面的可视化差不多,没有一点功能元素,虽然它是最简洁的,但是我们可以通过这个进行改动,在上面创作的画作。

  

import pyecharts.options as opts

  from pyecharts.charts import Line

  from pyecharts.globals import ThemeType

  x_data = ["Mon", "Tue", "Wed", "Thu", "Fri", "Sat", "Sun"]

  y_data = [820, 932, 901, 934, 1290, 1330, 1320]

  (

  Line({"theme": ThemeType.MACARONS})

  .set_global_opts(

  tooltip_opts=opts.TooltipOpts(is_show=False),

  xaxis_opts=opts.AxisOpts(

  name=类别,

  name_location=middle,

  name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20

  name_textstyle_opts=opts.TextStyleOpts(

  font_family=Times New Roman,

  font_size=16 # 标签字体大小

  )),

  yaxis_opts=opts.AxisOpts(

  type_="value",

  axistick_opts=opts.AxisTickOpts(is_show=True),

  splitline_opts=opts.SplitLineOpts(is_show=True),

  name=数量,

  name_location=middle,

  name_gap=30,

  name_textstyle_opts=opts.TextStyleOpts(

  font_family=Times New Roman,

  font_size=16

  # font_weight=bolder,

  )),

  )

  .add_xaxis(xaxis_data=x_data)

  .add_yaxis(

  series_name="",

  y_axis=y_data,

  symbol="emptyCircle",

  is_symbol_show=True,

  label_opts=opts.LabelOpts(is_show=False),

  )

  .render("简单折线图.html")

  )

  

  

  

连接空白数据折线图

  有时候我们在处理数据的时候,发现有些类别的数据缺失了,这个时候我们想要它可以自动连接起来,那么这个模板就可以用到了。

  

import pyecharts.options as opts

  from pyecharts.charts import Line

  from pyecharts.faker import Faker

  from pyecharts.globals import ThemeType

  y = Faker.values()

  y[3], y[5] = None, None

  c = (

  Line({"theme": ThemeType.WONDERLAND})

  .add_xaxis(Faker.choose())

  .add_yaxis("商家A", y, is_connect_nones=True)

  .set_global_opts(title_opts=opts.TitleOpts(title="标题"),

  xaxis_opts=opts.AxisOpts(

  name=类别,

  name_location=middle,

  name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20

  name_textstyle_opts=opts.TextStyleOpts(

  font_family=Times New Roman,

  font_size=16 # 标签字体大小

  )),

  yaxis_opts=opts.AxisOpts(

  name=数量,

  name_location=middle,

  name_gap=30,

  name_textstyle_opts=opts.TextStyleOpts(

  font_family=Times New Roman,

  font_size=16

  # font_weight=bolder,

  )), )

  # toolbox_opts=opts.ToolboxOpts() # 工具选项)

  .render("数据缺失折线图.html")

  )

  

  

  

对数轴折线图示例

  此图例未必用的上,当然也可以作为一个模板分享于此。

  

import pyecharts.options as opts

  from pyecharts.charts import Line

  x_data = ["一", "二", "三", "四", "五", "六", "七", "八", "九"]

  y_data_3 = [1, 3, 9, 27, 81, 247, 741, 2223, 6669]

  y_data_2 = [1, 2, 4, 8, 16, 32, 64, 128, 256]

  y_data_05 = [1 / 2, 1 / 4, 1 / 8, 1 / 16, 1 / 32, 1 / 64, 1 / 128, 1 / 256, 1 / 512]

  (

  Line(init_opts=opts.InitOpts(width="1200px", height="600px"))

  .add_xaxis(xaxis_data=x_data)

  .add_yaxis(

  series_name="1/2的指数",

  y_axis=y_data_05,

  linestyle_opts=opts.LineStyleOpts(width=2),

  )

  .add_yaxis(

  series_name="2的指数", y_axis=y_data_2, linestyle_opts=opts.LineStyleOpts(width=2)

  )

  .add_yaxis(

  series_name="3的指数", y_axis=y_data_3, linestyle_opts=opts.LineStyleOpts(width=2)

  )

  .set_global_opts(

  title_opts=opts.TitleOpts(title="对数轴示例", pos_left="center"),

  tooltip_opts=opts.TooltipOpts(trigger="item", formatter="{a} <br/>{b} : {c}"),

  legend_opts=opts.LegendOpts(pos_left="left"),

  xaxis_opts=opts.AxisOpts(type_="category", name="x"),

  yaxis_opts=opts.AxisOpts(

  type_="log",

  name="y",

  splitline_opts=opts.SplitLineOpts(is_show=True),

  is_scale=True,

  ),

  )

  .render("对数轴折线图.html")

  )

  

  

  

折线图堆叠(适合多个折线图展示)

  多个折线图展示要注意的是,数据量不能过于的接近,不然密密麻麻的折线,反而让人看起来不舒服。

  

import pyecharts.options as opts

  from pyecharts.charts import Line

  from pyecharts.globals import ThemeType

  x_data = ["周一", "周二", "周三", "周四", "周五", "周六", "周日"]

  y_data = [820, 932, 901, 934, 1290, 1330, 1320]

  (

  Line({"theme": ThemeType.MACARONS})

  .add_xaxis(xaxis_data=x_data)

  .add_yaxis(

  series_name="邮件营销",

  stack="总量",

  y_axis=[120, 132, 101, 134, 90, 230, 210],

  label_opts=opts.LabelOpts(is_show=False),

  )

  .add_yaxis(

  series_name="联盟广告",

  stack="总量",

  y_axis=[220, 182, 191, 234, 290, 330, 310],

  label_opts=opts.LabelOpts(is_show=False),

  )

  .add_yaxis(

  series_name="视频广告",

  stack="总量",

  y_axis=[150, 232, 201, 154, 190, 330, 410],

  label_opts=opts.LabelOpts(is_show=False),

  )

  .add_yaxis(

  series_name="直接访问",

  stack="总量",

  y_axis=[320, 332, 301, 334, 390, 330, 320],

  label_opts=opts.LabelOpts(is_show=False),

  )

  .add_yaxis(

  series_name="搜索引擎",

  stack="总量",

  y_axis=[820, 932, 901, 934, 1290, 1330, 1320],

  label_opts=opts.LabelOpts(is_show=False),

  )

  .set_global_opts(

  title_opts=opts.TitleOpts(title="折线图堆叠"),

  tooltip_opts=opts.TooltipOpts(trigger="axis"),

  yaxis_opts=opts.AxisOpts(

  type_="value",

  axistick_opts=opts.AxisTickOpts(is_show=True),

  splitline_opts=opts.SplitLineOpts(is_show=True),

  name=数量,

  name_location=middle,

  name_gap=40,

  name_textstyle_opts=opts.TextStyleOpts(

  font_family=Times New Roman,

  font_size=16

  # font_weight=bolder,

  )),

  xaxis_opts=opts.AxisOpts(type_="category", boundary_gap=False,

  name=类别,

  name_location=middle,

  name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20

  name_textstyle_opts=opts.TextStyleOpts(

  font_family=Times New Roman,

  font_size=16 # 标签字体大小

  )),

  )

  .render("折线图堆叠.html")

  )

  

  

  

二维曲线折线图(两个数据)

  有时候需要在一个图里面进行对比,那么我们应该如何呈现一个丝滑般的曲线折线图呢?看看这个

  

import pyecharts.options as opts

  from pyecharts.charts import Line

  from pyecharts.faker import Faker

  c = (

  Line()

  .add_xaxis(Faker.choose())

  .add_yaxis("商家A", Faker.values(), is_smooth=True) # 如果不想变成曲线就删除即可

  .add_yaxis("商家B", Faker.values(), is_smooth=True)

  .set_global_opts(title_opts=opts.TitleOpts(title="标题"),

  xaxis_opts=opts.AxisOpts(

  name=类别,

  name_location=middle,

  name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20

  name_textstyle_opts=opts.TextStyleOpts(

  font_family=Times New Roman,

  font_size=16 # 标签字体大小

  )),

  yaxis_opts=opts.AxisOpts(

  name=数量,

  name_location=middle,

  name_gap=30,

  name_textstyle_opts=opts.TextStyleOpts(

  font_family=Times New Roman,

  font_size=16

  # font_weight=bolder,

  )),

  # toolbox_opts=opts.ToolboxOpts() # 工具选项

  )

  .render("二维折线图.html")

  )

  

  

  

多维度折线图(颜色对比)

  次模板的最大的好处就是可以移动鼠标智能显示数据

  

import pyecharts.options as opts

  from pyecharts.charts import Line

  # 将在 v1.1.0 中更改

  from pyecharts.commons.utils import JsCode

  js_formatter = """function (params) {

  console.log(params);

  return 降水量 + params.value + (params.seriesData.length ? : + params.seriesData[0].data : );

  }"""

  (

  Line(init_opts=opts.InitOpts(width="1200px", height="600px"))

  .add_xaxis(

  xaxis_data=[

  "2016-1",

  "2016-2",

  "2016-3",

  "2016-4",

  "2016-5",

  "2016-6",

  "2016-7",

  "2016-8",

  "2016-9",

  "2016-10",

  "2016-11",

  "2016-12",

  ]

  )

  .extend_axis(

  xaxis_data=[

  "2015-1",

  "2015-2",

  "2015-3",

  "2015-4",

  "2015-5",

  "2015-6",

  "2015-7",

  "2015-8",

  "2015-9",

  "2015-10",

  "2015-11",

  "2015-12",

  ],

  xaxis=opts.AxisOpts(

  type_="category",

  axistick_opts=opts.AxisTickOpts(is_align_with_label=True),

  axisline_opts=opts.AxisLineOpts(

  is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#6e9ef1")

  ),

  axispointer_opts=opts.AxisPointerOpts(

  is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter))

  ),

  ),

  )

  .add_yaxis(

  series_name="2015 降水量",

  is_smooth=True,

  symbol="emptyCircle",

  is_symbol_show=False,

  # xaxis_index=1,

  color="#d14a61",

  y_axis=[2.6, 5.9, 9.0, 26.4, 28.7, 70.7, 175.6, 182.2, 48.7, 18.8, 6.0, 2.3],

  label_opts=opts.LabelOpts(is_show=False),

  linestyle_opts=opts.LineStyleOpts(width=2),

  )

  .add_yaxis(

  series_name="2016 降水量",

  is_smooth=True,

  symbol="emptyCircle",

  is_symbol_show=False,

  color="#6e9ef1",

  y_axis=[3.9, 5.9, 11.1, 18.7, 48.3, 69.2, 231.6, 46.6, 55.4, 18.4, 10.3, 0.7],

  label_opts=opts.LabelOpts(is_show=False),

  linestyle_opts=opts.LineStyleOpts(width=2),

  )

  .set_global_opts(

  legend_opts=opts.LegendOpts(),

  tooltip_opts=opts.TooltipOpts(trigger="none", axis_pointer_type="cross"),

  xaxis_opts=opts.AxisOpts(

  type_="category",

  axistick_opts=opts.AxisTickOpts(is_align_with_label=True),

  axisline_opts=opts.AxisLineOpts(

  is_on_zero=False, linestyle_opts=opts.LineStyleOpts(color="#d14a61")

  ),

  axispointer_opts=opts.AxisPointerOpts(

  is_show=True, label=opts.LabelOpts(formatter=JsCode(js_formatter))

  ),

  ),

  yaxis_opts=opts.AxisOpts(

  type_="value",

  splitline_opts=opts.SplitLineOpts(

  is_show=True, linestyle_opts=opts.LineStyleOpts(opacity=1)

  ),

  ),

  )

  .render("多维颜色多维折线图.html")

  )

  

  

  

阶梯折线图

  

import pyecharts.options as opts

  from pyecharts.charts import Line

  from pyecharts.faker import Faker

  from pyecharts.globals import ThemeType

  c = (

  Line({"theme": ThemeType.MACARONS})

  .add_xaxis(Faker.choose())

  .add_yaxis("商家A", Faker.values(), is_step=True)

  .set_global_opts(title_opts=opts.TitleOpts(title="标题"),

  xaxis_opts=opts.AxisOpts(

  name=类别,

  name_location=middle,

  name_gap=30, # 标签与轴线之间的距离,默认为20,最好不要设置20

  name_textstyle_opts=opts.TextStyleOpts(

  font_family=Times New Roman,

  font_size=16 # 标签字体大小

  )),

  yaxis_opts=opts.AxisOpts(

  name=数量,

  name_location=middle,

  name_gap=30,

  name_textstyle_opts=opts.TextStyleOpts(

  font_family=Times New Roman,

  font_size=16

  # font_weight=bolder,

  )),

  # toolbox_opts=opts.ToolboxOpts() # 工具选项

  )

  .render("阶梯折线图.html")

  )

  

  

  

js高渲染折线图

  里面的渲染效果相当好看,可以适用于炫酷的展示,数据集可以展示也可以不展示,在相应的位置更改参数即可。

  

import pyecharts.options as opts

  from pyecharts.charts import Line

  from pyecharts.commons.utils import JsCode

  x_data = ["14", "15", "16", "17", "18", "19", "20", "21", "22", "23","24","25","26","27","28","29","30","31","32","33","34","35","36","37","38","39","40"]

  y_data = [393, 438, 485, 631, 689, 824, 987, 1000, 1100, 1200,1500,1000,1700,1900,2000,500,1200,1300,1500,1800,1500,1900,1700,1000,1900,1800,2100,1600,2200,2300]

  background_color_js = (

  "new echarts.graphic.LinearGradient(0, 0, 0, 1, "

  "[{offset: 0, color: #c86589}, {offset: 1, color: #06a7ff}], false)"

  )

  area_color_js = (

  "new echarts.graphic.LinearGradient(0, 0, 0, 1, "

  "[{offset: 0, color: #eb64fb}, {offset: 1, color: #3fbbff0d}], false)"

  )

  c = (

  Line(init_opts=opts.InitOpts(bg_color=JsCode(background_color_js)))

  .add_xaxis(xaxis_data=x_data)

  .add_yaxis(

  series_name="注册总量",

  y_axis=y_data,

  is_smooth=True,

  is_symbol_show=True,

  symbol="circle",

  symbol_size=6,

  linestyle_opts=opts.LineStyleOpts(color="#fff"),

  label_opts=opts.LabelOpts(is_show=True, position="top", color="white"),

  itemstyle_opts=opts.ItemStyleOpts(

  color="red", border_color="#fff", border_width=3

  ),

  tooltip_opts=opts.TooltipOpts(is_show=False),

  areastyle_opts=opts.AreaStyleOpts(color=JsCode(area_color_js), opacity=1),

  )

  .set_global_opts(

  title_opts=opts.TitleOpts(

  title="OCTOBER 2015",

  pos_bottom="5%",

  pos_left="center",

  title_textstyle_opts=opts.TextStyleOpts(color="#fff", font_size=16),

  ),

  xaxis_opts=opts.AxisOpts(

  type_="category",

  boundary_gap=False,

  axislabel_opts=opts.LabelOpts(margin=30, color="#ffffff63"),

  axisline_opts=opts.AxisLineOpts(is_show=False),

  axistick_opts=opts.AxisTickOpts(

  is_show=True,

  length=25,

  linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),

  ),

  splitline_opts=opts.SplitLineOpts(

  is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f")

  ),

  ),

  yaxis_opts=opts.AxisOpts(

  type_="value",

  position="right",

  axislabel_opts=opts.LabelOpts(margin=20, color="#ffffff63"),

  axisline_opts=opts.AxisLineOpts(

  linestyle_opts=opts.LineStyleOpts(width=2, color="#fff")

  ),

  axistick_opts=opts.AxisTickOpts(

  is_show=True,

  length=15,

  linestyle_opts=opts.LineStyleOpts(color="#ffffff1f"),

  ),

  splitline_opts=opts.SplitLineOpts(

  is_show=True, linestyle_opts=opts.LineStyleOpts(color="#ffffff1f")

  ),

  ),

  legend_opts=opts.LegendOpts(is_show=False),

  )

  .render("高渲染.html")

  )

  

  

  所有图表均可配置,无论是字体的大小,还是颜色,还是背景都可以自己配置哟!下期文章我们继续探索折线图的魅力哟!

  到此这篇关于Python可视化神器pyecharts绘制折线图详情的文章就介绍到这了,更多相关python绘制折线图内容请搜索盛行IT软件开发工作室以前的文章或继续浏览下面的相关文章希望大家以后多多支持盛行IT软件开发工作室!

郑重声明:本文由网友发布,不代表盛行IT的观点,版权归原作者所有,仅为传播更多信息之目的,如有侵权请联系,我们将第一时间修改或删除,多谢。

留言与评论(共有 条评论)
   
验证码: